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@ The deeper the network, the better the performance?;

@ What about going beyond finite layers? ODE perspective!

1Kien et. al., Iris recognition with off-the-shelf CNN features: A deep learning perspective. |IEEE Access
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ODE Perspective of Neural Networks

Considering the ordinary differential equation:

dx(t)
dt

= f(x(t), t), x(0) = xo. (1)

Applying the forward Euler discretization scheme:
X(tn1) = x(tn) + Atf(x(tn), tn), (2)

o Let x, =x(t,), At=1 ..

Xnt1 = Xn + f(Xn). (3)
@ ... and it recovers a residual network.
@ Such connection relies on the residual connections!
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Our Goal

@ ODE perspective for non-residual networks?

@ Non-residual CNNs sometimes enjoy better robustness
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@ Need better ODE to unify residual and non-residual networks!

2Su et. al., Is Robustness the Cost of Accuracy? — A Comprehensive Study on the Robustness of 18 Deep
Image Classification Models. ECCV 2018
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ODE perspective for Model Robustness

Several related work ...
@ Decrease step size: Zhang et al., IJCAI 2019;
@ Implicit numerical scheme: Reshniak et al., arxiv 2019;
@ Time-invariant neural ODE: Yan et al., ICLR 2020;
@ Neural Stochastic Differential Equation: Liu et al., arxiv 2019;
@ Ensemble of noise-injected ResNet: Wang et al., NeurlPS 2019;
@ Adv. training as differential game: Zhang et al., NeurlPS 20109.

Most of them focus on numerical scheme or stochasticity!

We propose a novel ODE model that unifies residual and
non-residual networks, which improves model robustness.
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Proposed ODE Model

@ Adding a damping term to the original ODE:

dx(t)
dt
e Constant A € [0, +00): interpolation coefficient;

= —x(t) + p(A\)f(x(t), t), x(0) = xo. (4)
@ p:[0,400) — [0,400): weight function.

For any T > 0, the solution of the ODE (4) is

x(T) = &7 <x0 + p(A) /0 " (). t)dt) )
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Unification of Residual and Non-Residual Networks

e Assuming f(x(t),t) = f(xp, ty) for all t € [t,, tp+1) , the
iterative scheme? is

\A 1— e—)xAt
Xpi1 = e Aix, + fp(/\)f,,(x,,). (6)

@ When the weight function p(\) satisfies

p(A\) = 1,A — 0% and p(\) ~ A\, A — +o0, (7)

@ the output of n-th layer is

Xp + fo(xn), ifA— 0T,
Xn+1 = .
Atfy(xn), if A = +oo0.

3This is in fact the 15¢ order ETD scheme.
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Damping Term Leads to Robustness

Proposition

The equilibrium x* of the ODE model
dx
— = f(x(t
o = (1) 9)

is asymptotically locally stable if and only if Re(v) < 0 where v is
the eigenvalue of Oxf(x*) which is the Jacobi matrix of f at x*.

@ The proposed ODE model has more locally stable equilibrium
points, as the Jacobi matrix is reduced by the damping term.

@ More locally stable points <+ more robust data points!
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Interpolated Neural Network Design

o Instantiate with p(\) = 1, e 2t ~ 1 — \AE:

X1 = (1= AAE)X, + Atho(Xn). (10)

@ Equip with learnable positive A, yielding In-ResNet:

Xpt1 = (1 — ReLU(Ap))xn + fo(xn). (11)
o Instantiate with p(\) = A + 1, e Mt = 1 — \At:

Xp+1 = (1 = AAt)xp + (1 + AAt)fp(xn), (12)

@ and further reduces to A-In-ResNet:

Xni1 = (1 — ReLUn))%n + (1 + ReLU(Nn))f(xn).  (13)
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Accuracy and Robustness Results

Benchmark [ Model “ Acc. [ Noise [ FGSM [ IFGSM [ PGD

ResNet-110 93.58 | 53.70 | 41.98 5.93 5.60
In-ResNet-110 92,28 | 72.67 | 55.24 | 32.05 | 31.74
A-In-ResNet-110 || 92.15 | 72.35 | 50.84 30.72 | 30.45

CIFAR-10 ResNet-164 94.46 | 56.51 44 .37 8.19 7.77
In-ResNet-164 92.69 | 72.05 | 51.84 | 27.43 | 26.95
A-In-ResNet-164 || 92.55 | 71.88 | 50.53 26.50 26.04
ResNet-110 72.73 | 25.76 | 18.74 2.18 2.11
In-ResNet-110 70.55 | 34.63 | 18.74 4.92 481

CIFAR-100 A-In-ResNet-110 || 70.39 | 34.69 | 18.40 5.17 5.00

ResNet-164 76.06 | 26.95 | 23.58 3.45 331
In-ResNet-164 72.94 | 35.12 | 22.30 6.59 6.34
A-In-ResNet-164 || 73.22 | 34.58 | 22.50 6.64 6.46

Table 1: Accuracy and robustness results.

@ Accuracy slightly drops but robustness is largely improved!
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Learned Interpolation Coefficients
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Figure 1: Learned interpolation coefficients on CIFAR-10.

@ Most of the learned interpolation coefficients lie in [0, 2];

@ Stable range for the forward numerical scheme!
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Loss Landscape Analysis with CIFAR-C Input

Loss LiX. y)
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Comparison with In-ResNet Variants

@ General form of In-ResNet:

xpt1 = (1 —act(d(xp)))xn + Atfp(xn).

@ In-ResNet variants:

d(X,,) =" d(Xn) = Wyx, + by
act = ReLU In-ResNet In-ResNet-gating
act = sigmoid | In-ResNet-sig | In-ResNet-gating-sig

@ Comparison of accuracy and robustness:

Model | Acc. | noise [ FGSM [ IFGSM | PGD
ResNet-110 93.58 | 53.70 | 41.48 5.93 5.60
In-ResNet-110 92.28 | 72.67 | 55.24 | 32.05 | 31.74
In-ResNet-sig-110 93.49 | 55.04 | 44.65 6.29 5.94
In-ResNet-gating-110 93.46 | 5453 | 41.25 5.65 5.33
In-ResNet-gating-sig-110 | 90.68 | 68.04 | 46.17 21.89 | 21.65
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Trade-off between Robustness and Accuracy

Model \ Initialization \ Acc. \ noise \ FGSM \ IFGSM \ PGD
ResNet - 93.58 | 53.70 | 41.48 5.93 5.60
4[0.00,0.10] | 93.51 | 55.15 | 46.74 8.39 7.96
4[0.10,0.20] | 93.25 | 62.88 | 49.58 16.89 | 16.46
In-ResNet U[0.20,0.25] | 92.28 | 72.67 | 55.24 32.05 | 31.74
U[0.25,0.30] | 91.63 | 76.20 | 55.79 36.53 | 36.28
U[0.30,0.40] | 90.62 | 79.35 | 55.95 | 41.07 | 40.84
4[0.00,0.10] | 93.41 | 54.18 | 42.28 6.78 6.48
4[0.10,0.20] | 92.86 | 63.58 | 46.07 16.99 | 16.60
A-In-ResNet | 24[0.20,0.25] | 92.15 | 72.35 | 50.84 30.72 | 30.45
U4[0.25,0.30] | 91.30 | 75.65 | 53.29 36.90 | 36.74
4[0.30,0.40] | 90.17 | 79.66 | 55.03 | 41.06 | 40.94

e Uniformly sampling as A,'s initialization from different U[x, y|;

@ Becoming non-residual: accuracy drops and robustness rises”.

*1(3) out of 5 fails for (\-)In-ResNet with 24[0.30, 0.40].

4
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Ensemble Leads to Robustness Improvement

@ Model ensemble over 5 different runs:

Model | Acc. [ noise | FGSM [ IFGSM [ PGD
ResNet-110 93.58 | 53.70 41.48 5.93 5.60
ResNet-110, ens 95.03 | 55.70 | 43.99 6.26 5.93
In-ResNet-110 02,28 | 72.67 55.24 32.05 | 31.74
In-ResNet-110, ens 94.03 | 75.86 | 58.42 | 34.44 | 34.03
A-In-ResNet-110 92.15 | 72.35 | 50.84 30.72 | 30.45
A-In-ResNet-110, ens | 94.00 | 75.29 | 53.66 32.95 | 32.77

@ Robustness of all the models rises ...
@ ... what about robustness improvement?

o Compare the difference between robustness of the ensemble
model and robustness of the single model ...
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Ensemble Leads to Robustness Improvement
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Figure 2: Comparison of robustness improvements.
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Current Neural ODE model relies on residual connection;

We propose a damped ODE model and unify residual and
non-residual networks from Neural ODE perspective;

Theory and experimental results show the robustness
improvement of our model.

Paper: https://arxiv.org/abs/2006.05749
Code: https://github.com/minicheshire/InResNet
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https://arxiv.org/abs/2006.05749
https://github.com/minicheshire/InResNet

Thank you for your attention!

20/20



