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Deep Learning, Deep Network

The deeper the network, the better the performance1;

What about going beyond finite layers? ODE perspective!

1
Kien et. al., Iris recognition with off-the-shelf CNN features: A deep learning perspective. IEEE Access
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ODE Perspective of Neural Networks

Considering the ordinary differential equation:

dx(t)

dt
= f (x(t), t), x(0) = x0. (1)

Applying the forward Euler discretization scheme:

x(tn+1) = x(tn) + ∆tf (x(tn), tn), (2)

Let xn = x(tn), ∆t = 1 ...

xn+1 = xn + fn(xn). (3)

... and it recovers a residual network.

Such connection relies on the residual connections!
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Our Goal

ODE perspective for non-residual networks?

Non-residual CNNs sometimes enjoy better robustness2:

Need better ODE to unify residual and non-residual networks!
2

Su et. al., Is Robustness the Cost of Accuracy? – A Comprehensive Study on the Robustness of 18 Deep
Image Classification Models. ECCV 2018
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ODE perspective for Model Robustness

Several related work ...

Decrease step size: Zhang et al., IJCAI 2019;

Implicit numerical scheme: Reshniak et al., arxiv 2019;

Time-invariant neural ODE: Yan et al., ICLR 2020;

Neural Stochastic Differential Equation: Liu et al., arxiv 2019;

Ensemble of noise-injected ResNet: Wang et al., NeurIPS 2019;

Adv. training as differential game: Zhang et al., NeurIPS 2019.

Most of them focus on numerical scheme or stochasticity!

We propose a novel ODE model that unifies residual and
non-residual networks, which improves model robustness.
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Proposed ODE Model

Adding a damping term to the original ODE:

dx(t)

dt
= −λx(t) + ρ(λ)f (x(t), t), x(0) = x0. (4)

Constant λ ∈ [0,+∞): interpolation coefficient;

ρ : [0,+∞) 7→ [0,+∞): weight function.

Proposition

For any T > 0, the solution of the ODE (4) is

x(T ) = e−λT

(
x0 + ρ(λ)

∫ T

0
eλt f (x(t), t)dt

)
. (5)
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Unification of Residual and Non-Residual Networks

Assuming f (x(t), t) = f (xn, tn) for all t ∈ [tn, tn+1) , the
iterative scheme3 is

xn+1 = e−λ∆txn +
1− e−λ∆t

λ
ρ(λ)fn(xn). (6)

When the weight function ρ(λ) satisfies

ρ(λ)→ 1, λ→ 0+ and ρ(λ) ∼ λ, λ→ +∞, (7)

the output of n-th layer is

xn+1 =

{
xn + fn(xn), if λ→ 0+,

∆tfn(xn), if λ→ +∞.
(8)

3
This is in fact the 1st order ETD scheme.
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Damping Term Leads to Robustness

Proposition

The equilibrium x∗ of the ODE model

dx

dt
= f (x(t)) (9)

is asymptotically locally stable if and only if Re(ν) < 0 where ν is
the eigenvalue of ∂xf (x∗) which is the Jacobi matrix of f at x∗.

The proposed ODE model has more locally stable equilibrium
points, as the Jacobi matrix is reduced by the damping term.

More locally stable points ↔ more robust data points!
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Interpolated Neural Network Design

Instantiate with ρ(λ) = 1, e−λ∆t ≈ 1− λ∆t:

xn+1 = (1− λ∆t)xn + ∆tfn(xn). (10)

Equip with learnable positive λ, yielding In-ResNet:

xn+1 = (1− ReLU(λn))xn + fn(xn). (11)

Instantiate with ρ(λ) = λ+ 1, e−λ∆t ≈ 1− λ∆t:

xn+1 = (1− λ∆t)xn + (1 + λ∆t)fn(xn), (12)

and further reduces to λ-In-ResNet:

xn+1 = (1− ReLU(λn))xn + (1 + ReLU(λn))fn(xn). (13)
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Accuracy and Robustness Results

Benchmark Model Acc. Noise FGSM IFGSM PGD

CIFAR-10

ResNet-110 93.58 53.70 41.98 5.93 5.60
In-ResNet-110 92.28 72.67 55.24 32.05 31.74
λ-In-ResNet-110 92.15 72.35 50.84 30.72 30.45
ResNet-164 94.46 56.51 44.37 8.19 7.77
In-ResNet-164 92.69 72.05 51.84 27.43 26.95
λ-In-ResNet-164 92.55 71.88 50.53 26.50 26.04

CIFAR-100

ResNet-110 72.73 25.76 18.74 2.18 2.11
In-ResNet-110 70.55 34.63 18.74 4.92 4.81
λ-In-ResNet-110 70.39 34.69 18.40 5.17 5.00
ResNet-164 76.06 26.95 23.58 3.45 3.31
In-ResNet-164 72.94 35.12 22.30 6.59 6.34
λ-In-ResNet-164 73.22 34.58 22.50 6.64 6.46

Table 1: Accuracy and robustness results.

Accuracy slightly drops but robustness is largely improved!
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Learned Interpolation Coefficients

Figure 1: Learned interpolation coefficients on CIFAR-10.

Most of the learned interpolation coefficients lie in [0, 2];

Stable range for the forward numerical scheme!
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Loss Landscape Analysis with CIFAR-C Input

(a) Loss landscape. (b) ResNet predictions (c) In-ResNet predictions

(d) Loss landscape. (e) ResNet predictions (f) In-ResNet predictions
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Comparison with In-ResNet Variants

General form of In-ResNet:

xn+1 = (1− act(d(xn)))xn + ∆tfn(xn).

In-ResNet variants:

d(xn) = λn d(xn) = Wdxn + bd
act = ReLU In-ResNet In-ResNet-gating
act = sigmoid In-ResNet-sig In-ResNet-gating-sig

Comparison of accuracy and robustness:

Model Acc. noise FGSM IFGSM PGD

ResNet-110 93.58 53.70 41.48 5.93 5.60
In-ResNet-110 92.28 72.67 55.24 32.05 31.74
In-ResNet-sig-110 93.49 55.04 44.65 6.29 5.94
In-ResNet-gating-110 93.46 54.53 41.25 5.65 5.33
In-ResNet-gating-sig-110 90.68 68.04 46.17 21.89 21.65
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Trade-off between Robustness and Accuracy

Model Initialization Acc. noise FGSM IFGSM PGD

ResNet - 93.58 53.70 41.48 5.93 5.60
U [0.00, 0.10] 93.51 55.15 46.74 8.39 7.96
U [0.10, 0.20] 93.25 62.88 49.58 16.89 16.46

In-ResNet U [0.20, 0.25] 92.28 72.67 55.24 32.05 31.74
U [0.25, 0.30] 91.63 76.20 55.79 36.53 36.28
U [0.30, 0.40] 90.62 79.35 55.95 41.07 40.84
U [0.00, 0.10] 93.41 54.18 42.28 6.78 6.48
U [0.10, 0.20] 92.86 63.58 46.07 16.99 16.60

λ-In-ResNet U [0.20, 0.25] 92.15 72.35 50.84 30.72 30.45
U [0.25, 0.30] 91.30 75.65 53.29 36.90 36.74
U [0.30, 0.40] 90.17 79.66 55.03 41.06 40.94

Uniformly sampling as λn’s initialization from different U [x , y ];

Becoming non-residual: accuracy drops and robustness rises4.

41(3) out of 5 fails for (λ-)In-ResNet with U [0.30, 0.40].
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Ensemble Leads to Robustness Improvement

Model ensemble over 5 different runs:

Model Acc. noise FGSM IFGSM PGD

ResNet-110 93.58 53.70 41.48 5.93 5.60
ResNet-110, ens 95.03 55.70 43.99 6.26 5.93
In-ResNet-110 92.28 72.67 55.24 32.05 31.74
In-ResNet-110, ens 94.03 75.86 58.42 34.44 34.03
λ-In-ResNet-110 92.15 72.35 50.84 30.72 30.45
λ-In-ResNet-110, ens 94.00 75.29 53.66 32.95 32.77

Robustness of all the models rises ...

... what about robustness improvement?

Compare the difference between robustness of the ensemble
model and robustness of the single model ...
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Ensemble Leads to Robustness Improvement

Figure 2: Comparison of robustness improvements.
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Takeaways

Current Neural ODE model relies on residual connection;

We propose a damped ODE model and unify residual and
non-residual networks from Neural ODE perspective;

Theory and experimental results show the robustness
improvement of our model.

Paper: https://arxiv.org/abs/2006.05749

Code: https://github.com/minicheshire/InResNet
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Thank you for your attention!
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