
Neural Machine Translation: A Review of Methods, Resources, and Tools

Zhixing Tana,c,d, Shuo Wanga,c,d, Zonghan Yanga,c,d, Gang Chena,c,d, Xuancheng Huanga,c,d,
Maosong Suna,c,d,e, Yang Liua,b,c,d,e,∗

aDepartment of Computer Science and Technology, Tsinghua University
bInstitute for AI Industry Research, Tsinghua University
cInstitute for Artificial Intelligence, Tsinghua University

dBeijing National Research Center for Information Science and Technology
eBeijing Academy of Artificial Intelligence

Abstract

Machine translation (MT) is an important sub-field of natural language processing that aims to translate natural languages using
computers. In recent years, end-to-end neural machine translation (NMT) has achieved great success and has become the new
mainstream method in practical MT systems. In this article, we first provide a broad review of the methods for NMT and focus on
methods relating to architectures, decoding, and data augmentation. Then we summarize the resources and tools that are useful for
researchers. Finally, we conclude with a discussion of possible future research directions.

Keywords: Neural machine translation, Attention mechanism, Deep learning, Natural language processing

1. Introduction

Machine Translation (MT) is an important task that aims
to translate natural language sentences using computers. The
early approach to machine translation relies heavily on hand-
crafted translation rules and linguistic knowledge. As natu-
ral languages are inherently complex, it is difficult to cover
all language irregularities with manual translation rules. With
the availability of large-scale parallel corpora, data-driven ap-
proaches that learn linguistic information from data have gained
increasing attention. Unlike rule-based machine translation,
Statistical Machine Translation (SMT) [1, 2] learns latent struc-
tures such as word alignments or phrases directly from parallel
corpora. Incapable of modeling long-distance dependencies be-
tween words, the translation quality of SMT is far from satisfac-
tory. With the breakthrough of deep learning, Neural Machine
Translation (NMT) [3, 4, 5, 6] has emerged as a new paradigm
and quickly replaced SMT as the mainstream approach to MT.

Neural machine translation is a radical departure from previ-
ous machine translation approaches. On the one hand, NMT
employs continuous representations instead of discrete sym-
bolic representations in SMT. On the other hand, NMT uses a
single large neural network to model the entire translation pro-
cess, freeing the need for excessive feature engineering. The
training of NMT is end-to-end as opposed to separately tuned
components in SMT. Besides its simplicity, NMT has achieved
state-of-the-art performance on various language pairs [7]. In
practice, NMT also becomes the key technology behind many
commercial MT systems [8, 9].

As neural machine translation attracts much research inter-
est and grows into an area with many research directions, we

∗Corresponding author.
Email address: liuyang2011@tsinghua.edu.cn (Yang Liu)

believe it is necessary to conduct a comprehensive review of
NMT. In this work, we will give an overview of the key ideas
and innovations behind NMT. We also summarize the resources
and tools that are useful and easily accessible. We hope that by
tracing the origins and evolution of NMT, we can stand on the
shoulder of past studies, and gain insights into the future of
NMT.

The remainder of this article is organized as follows: Sec-
tion 2 will review the methods of NMT. We first introduce
the basics of NMT, and then we selectively describe the recent
progress of NMT. We focus on methods related to architectures,
decoding, and data augmentation. Section 3 will summarize the
resources such as parallel or monolingual corpora that are pub-
licly available to researchers. Section 4 will describe tools that
are useful for training and evaluating NMT models. Finally, we
conclude and discuss future directions in Section 5.

2. Methods

As a data-driven approach to machine translation, NMT also
embraces the probabilistic framework. Mathematically speak-
ing, the goal of NMT is to estimate an unknown conditional
distribution P (y|x) given the dataset D, where x and y are
random variables representing source input and target output,
respectively. We strive to answer the three basic questions of
NMT:

• Modeling. How to design neural networks to model the
conditional distribution?

• Inference. Given a source input, how to generate a transla-
tion sentence from the NMT model?

ar
X

iv
:2

01
2.

15
51

5v
1

 [
cs

.C
L

]
 3

1
D

ec
 2

02
0

ChuangXin SuZao WeiLai <eos>

..
.

..
.

..
.

..
.Embedding

Encoder

<bos> Innovate for the future

..
.

..
.

..
.

..
.

..
. Embedding

Decoder

..
.

..
.

..
.

..
.

..
. Classifier

Innovate for the future <eos>

Figure 1: An overview of the NMT architecture, which consists of embedding layers, a classification layer, an encoder network, and a decoder network. We use
different colors to distinguish different languages.

• Learning. How to effectively learn the parameters of NMT
from data?

In 2.1, we first describe the basic methods of NMT for ad-
dressing the above three questions. We then dive into the de-
tails of NMT architectures in 2.2 and introduce bidirectional
inference and non-autoregressive NMTs in 2.3. We discuss al-
ternative training objectives and using monolingual data in 2.4
and 2.5, respectively.

Despite the great success, NMT is far from perfect. There are
several theoretical and practical challenges faced by NMT. We
survey the research progress of some important directions. We
describe methods for open vocabulary in 2.6, prior knowledge
integration in 2.7, and interpretability and robustness in 2.8.

2.1. Overview of NMT

2.1.1. Modeling
Translation can be modeled at different levels, such as

document-, paragraph-, and sentence-level. In this article, we
focus on sentence-level translation. Besides, we also assume
the input and output sentences are sequences. Thus the NMT
model can be viewed as a sequence-to-sequence model. As-
suming we are given a source sentence x = {x1, . . . , xS} and
a target sentence y = {y1, . . . , yT }. By using the chain rule,
the conditional distribution can be factorized from left-to-right
(L2R) as

P (y = y|x = x) =

T∏
t=1

P (yt|y0, . . . , yt−1, x1, . . . , xS). (1)

NMT models which conform the Eq. (1) is referred to as L2R
autoregressive NMT [3, 4, 5, 6], for the prediction at time-step
t is taken as a input at time-step t+ 1.

Almost all neural machine translation models employ the
encoder-decoder framework [4]. The encoder-decoder frame-
work consists of four basic components: the embedding layers,
the encoder and decoder networks, and the classification layer.
Figure 1 shows a typical autoregressive NMT model using the

encoder-decoder framework, which we shall use as an exam-
ple. “<bos>” and “<eos>” are special symbols that mark the
beginning and ending of a sentence, respectively.

The embedding layer embodies the concept of continuous
representation. It maps a discrete symbols xt into a contin-
uous vector xt ∈ Rd, where d denotes the dimension of the
vector. The embeddings are then fed into later layers for more
finer-grained feature extraction.

The encoder network maps the source embeddings into hid-
den continuous representations. To learn expressive represen-
tations, the encoder must be able to model the ordering and
complex dependencies that existed in the source language. Re-
current neural networks (RNN) are suitable choice for model-
ing variable-length sequences. With RNNs, the computation
involves in encoder can be described as

ht = RNNENC(xt,ht−1). (2)

By iteratively applying the state transition function RNNENC
over the input sequence, we can use the final state hS as the
representation for the entire source sentence, and then feed it to
the decoder.

The decoder can be viewed as a language model conditioned
on hS . The decoder network extracts necessary information
from the encoder output, and also models the long-distance
dependencies between target words. Given the start symbol
y0 = <bos> and the initial state s0 = hS , the RNN de-
coder compresses the decoding history {y0, . . . , yt−1} into a
state vector st ∈ Rd:

st = RNNDEC(yt−1, st−1). (3)

The classification layer predicts the distribution of target to-
kens. The classification layer is typically a linear layer with
softmax activation function. Assuming the vocabulary of target
language is V , and |V | is the size of the vocabulary. Given an
decoder output st ∈ Rd, the classificaition layer first maps h
to a vector z in the vocabulary space R|V | with the linear map.
Then the softmax function is used to ensure the output vector is

2

<pad>
−∞

<bos>
−∞

..
.

<pad>
−∞

<bos>
−∞

..
.

Innovate
−0.55

Innovation
−0.95

..
.

<pad>
−∞

<bos>
−∞

..
.

for
−0.35

to
−1.25

..
.

shapes
−0.60

shaped
−1.00

..
.

the
−0.45

future
−1.20

..
.

the
−0.50

future
−1.00

..
.

future
−0.25

next
−1.60

..
.

future
−0.35

next
−1.25

..
.

<eos>
−0.5

.
−1.05

..
.

<eos>
−0.55

.
−0.95

..
.

0 1 2 3 4 5Steps

Predictions

F

A

∅ ∅ ∅ ∅ ∅

∅<bos>
-0.00

<bos> Innovate
-0.55

<bos> Innovation
-0.95

<bos> Innovate for
-0.9

<bos> Innovation for
-1.55

<bos> Innovate for the
-1.35

<bos> Innovation for the
-2.05

<bos> Innovate ... future
-1.60

<bos> Innovation ... future
-2.40

<bos> Innovate ... <eos>
-2.10

<bos> Innovation ... <eos>
-2.95

Figure 2: A running example of the beam-search algorithm.

a valid probability:

softmax(z) =
exp(z)∑|V |

i=1 exp(z[i])
, (4)

where we use z[i] to denote the i-th component in z.

2.1.2. Inference
Given an NMT model and a source sentence x, how to gener-

ate a translation from the model is an important problem. Ide-
ally, we would like to find the target sentence y which maxi-
mizes the model prediction P (y|x = x;θ) as the translation.
However, due to the intractably large search space, it is imprac-
tical to find the translation with the highest probability. There-
fore, NMT typically uses local search algorithms such as greedy
search or beam search to find a local best translation.

Beam search is a classic local search algorithm which have
been widely used in NMT. Previously, beam search have been
successfully applied in SMT. The beam search algorithm keeps
track of k states during the inference stage. Each state is a tu-
ple 〈y0 . . . yt, v〉, where y0 . . . yt is a candidate translation, and
v is the log-probability of the candidate. At each step, all the
successors of all k states are generated, but only the top-k suc-
cessors are selected. The algorithm usually terminates when the
step exceed a pre-defined value or k full translation are found.
It should be noted that the beam search will degrade into the
greedy search if k = 1.

The pseudo-codes of the beam search algorithm are given in
1. We also give a running example of the algorithm in Figure 2.

2.1.3. Training of NMT Models
NMT typically uses maximum log-likelihood (MLE) as the

training objective function, which is a commonly used method
of estimating the parameters of a probability distribution. For-
mally, given the training set D = {〈x(s),y(s)〉}Ss=1, the goal of

Algorithm 1: The beam search algorithm

1 t← 1 ;
2 A = {〈<bos>, 0〉} ; . The set of alive candidates
3 F = {} ; . The set of finished candidates
4 while t < max length do
5 C = {} ;
6 for 〈y0 . . . yt−1, v〉 ∈ A do
7 p← NMT(y0 . . . yt−1,x) ;
8 for w ∈ V do
9 yt ← w ;

10 l← log(p[w]) ;
11 C ← C ∪ {〈y0 . . . yt, v + l〉} ;
12 end
13 end
14 C ← TopK(C, k) ;
15 for 〈y0 . . . yt, v〉 ∈ C do
16 if yt == <eos> then
17 F ← F ∪ {〈y0 . . . yt, v〉} ;
18 else
19 A ← A∪ {〈y0 . . . yt, v〉} ;
20 end
21 end
22 A ← TopK(A, k) ;
23 F ← TopK(F , k) ;
24 t← t+ 1 ;
25 end
26 〈y0 . . . yt, v〉 ← Top(F) ;
27 return y1 . . . yt

training is to find a set of model parameters that maximize the
log-likelihood on the training set:

θ̂MLE = argmax
θ

{
L(θ)

}
, (5)

3

where the log-likelihood is defined as

L(θ) =

S∑
s=1

logP (y(s)|x(s);θ). (6)

By the virtue of back-propagation algorithm, we can effi-
ciently compute the gradient of L with respect to θ. The train-
ing of NMT models usually adopts stochastic gradient search
(SGD) algorithm. Instead of computing gradients on the full
training set, SGD computes the loss function and graidents on a
minibatch of the training set. The plain SGD optimzier updates
the parameters of an NMT model with the following rule:

θ ← θ − α∇θL(θ), (7)

where α is the learning rate. With well-chosen learning rate,
the parameters of NMT are guaranteed to converge into a local
optima. In practice, instead of plain SGD optimizer, adaptive
learning rate optimizers such as Adam [10] are found to greatly
reduce the training time.

2.2. Architectures
2.2.1. Evolution of NMT Architectures

Since 2013, there are attempts to build a pure neural MT.
Early NMT architectures such as RCTM [3], RNNEncdec [4],
and Seq2Seq [5] adopt a fixed-length approach, where the size
of source representation is fixed regardless the length of source
sentences. These works typically use recurrent neural net-
works (RNN) as the decoder network for generating variable-
length translation. However, it is found that the performance
of this approach degrades as the length of the input sentence
increases [11]. Two explanations can account for this phe-
nomenon:

1. The fixed-length representations have become the bottle-
neck during the encoding process for long sentences [4].
As the encoder is forced to compress the entire source sen-
tence into a set of fixed-length vectors, some important in-
formation may be lost in this process.

2. The longest path between the source words and target
words is O(S + T), and it is challenging for neural net-
works to learn long-term dependencies [12]. Sutskever
et al. [5] found that reverse the source sentence can sig-
nificantly improve the performance of the fixed-length ap-
proach. By reversing the source sentence, the paths be-
tween the beginning words of source and target sentences
are reduced, thus the optimization problem becomes eas-
ier.

Due to these limitations, later NMT architectures switch
to variable-length source representations, where the length of
source representations depends on the length of the source sen-
tence. The RNNsearch architecture [6] introduces attention
mechanism, which is an important approach to implementing
variable-length representations. Figure 3 shows the compari-
son between fixed-length and variable-length approaches. By
using the attention mechanism, the paths between any source

Context vector 0.1 -0.4 -0.3 0.5 1.2

ChuangXin SuZao WeiLai <eos>

<bos> Innovate for the future

Innovate for the future <eos>

Figure 3: At each decoding step, the attention mechanism dynamically gen-
erates a context vector based on the most relevant source representations for
predicting the next target word.

and target words are within a constant length. As a result, the
attention mechanism has eased optimization difficulty.

With the breakthrough of deep learning, NMT with deep neu-
ral networks have attracted much research interest. Seq2Seq [5]
is the first architecture demonstrate the potential of deep NMT.
Later architectures such as GNMT [8], ByteNet [13], ConvSeq-
2Seq [14], and Transformer [15] all use multi-layered neural
networks. ByteNet and ConvSeq2Seq have replaced RNNs
with convolutional neural networks (CNN) in their architec-
tures while Transformer relies entirely on self-attention net-
works (SAN). Both CNNs and SANs can reduce the sequen-
tial operations invovled in RNNs, and benefit from the parallel
computation provided by modern devices such as GPU or TPU.
Importantly, SAN can further reduce the longest path between
two target tokens. We shall later describe the techniques for
building these architectures.

2.2.2. Attention Mechanism
The introduction of attention mechanism [6] is a milestone

in NMT architecture research. The attention network computes
the relevance of each value vector based on queries and keys.
This can also be interpreted as a content-based addressing sche-
me [16]. Formally, given a set of m query vectors Q ∈ Rm×d,
a set of n key vectors K ∈ Rn×d and associated value vectors
V ∈ Rn×d, the computation of attention network involves two
steps. The first step is to compute the relevance between keys
and values, which is formally described as

R = score(Q,K), (8)

where score(·) is a scoring function which have several alter-
natives. R ∈ Rm×n is a matrix storing the relevance score
between each keys and values. The next step is compute the
output vectors. For each query vector, the corresponding out-
put vector is expressed as a weighted sum of value vectors:

Attention(Q,K,V) = softmax(R) ·V. (9)

4

queries

keys

..
.

..
.

..
.

..
.

..
.

..
.

0.20 0.15 0.65

(a) Given a query vector and key vectors, the attention
network first computes a weight vector through the scor-
ing function.

values

outputs

..
.

..
.

..
.

+

..
.

..
.

..
.

0.20 0.15 0.65

(b) Each output vector is computed as a weighted sum
of value vectors.

Figure 4: Detailed computations involved in the attention mechanism.

Figure 4 depicts the two steps involved in the computation of
attention mechanism.

Considering on the scoring function, the attention networks
can be roughly classified into two categories: additive atten-
tion [6] and dot-product attention [17]. The additive attention
models score through a feed-forward neural network:

R[i,j] = v> tanh(WsQ[i] + UsK[j]), (10)

where Ws ∈ Rd×d,Us ∈ Rd×d, and v ∈ Rd×1 are learnable
parameters. On the other hand, the dot-product attention uses
dot production to compute the matching score:

R[i,j] = Q>[i]K[j]. (11)

In practice, the dot-product attention is much faster than the
additive attention. However, the dot-product attention is found
to be less stable than the additive attention when d is large [15].
Vaswani et al. [15] suspect that the dot-products grow large in
magnitude for large values of d, which may resulting extremely
small gradients caused by the softmax function. To remedy this
issue, they propose to scale the dot-products by 1√

d
.

The attention mechanism is usually used as a part of the de-
coder network. Another type of attention network called self-
attention network, is widely used in both the encoder and de-
coder of NMT. We shall describe self-attention and other vari-
ants of attention network later.

2.2.3. RNNs, CNNs, and SANs
There are many methods of building powerful encoders and

decoders, which can roughly divide into three categories: the

recurrent neural network (RNN) based methods, convolutional
neural network (CNN) based methods, and self-attention net-
work (SAN) based methods. There are several aspects we need
to take into considerations for building an encoder and decoder:

1. Receptive field. We hope each output produced by the en-
coder and decoder can potentially encode arbitrary infor-
mation in the input sequence.

2. Computational complexity. It is desirable to a use network
with lower computational complexity.

3. Sequential operations. Too many sequential operations
preclude the parallel computation within the sequence.

4. Position awareness. The network should distinguish the
ordering presents in the sequence.

Table 1 summarizes the computation as well as the above-
mentioned aspects of typical RNN, CNN, and SAN.

(a) RNN.

(b) CNN with kernel width k = 3.

(c) SAN.

Figure 5: Overview of the computation diagram of RNN, CNN, and SAN. To
be clarity, we use a node to denote the input or output vector of a specific layer.

(a) CNN with additional zero paddings.

(b) SAN with causal masking.

Figure 6: The computation of CNN and SAN during decoding.

Figure 5 gives an overview of the ways of RNN, CNN, and
SAN to encode sequences, respectively. In order to keep the
auto-regressive property of NMT decoder during training, CNN
and SAN furthur needs additional padding and masking to pre-
vent the network from seeing future words. Figure 6 shows
padding and masking used in CNN and SAN.

As we can see in Figure 5(a), RNNs are a family of se-
quential models that repeatedly apply the same state transition
function to sequences. In theory, RNNs are among the most

5

Layer Computation R.F. Complexity S.O. P.A.
RNN hl,t = Whl−1,t + Uhl,t−1 ∞ O(n · d2) O(n) Yes
CNN hl,t =

∑k
i=1 W

(i)hl−1,t+i−d k+1
2 e

k O(k · n · d2) O(1) Yes
SAN hl,t =

∑n
i=1 αl,ihl−1,i ∞ O(n2 · d) O(1) No

Table 1: Comparisons between different neural network layers. We use R.F. to denote the receptive field, S.O. to denote the number of sequential operations, and
P.A. to denote the position awareness of the layer. t is the position in the sequence, l is the layer number. For CNN, k is the filter width and W(i) is the weight of
the i-th filter.

powerful family of neural networks [18]. However, it suffers
from severe vanishing and exploding gradient problem [12] in
practice. RNNs with gates, such as long short-term memory
(LSTM) [19] and gated recurrent unit (GRU) [4] have been
proposed to alleviate this problem. Another way to stabilize
the training is to incorporate normalization layers, such as layer
normalization [20].

(a) Deep RNN.

(b) Bidirectional RNN.

(c) Alternating RNN.

Figure 7: Three extensions to RNNs.

Figure 7 shows three extensions to RNNs that are widely
used in NMT literature. Deep RNNs is one important way to in-
crease the expressive power of RNNs. However, training deep
neural networks is challenging because it also faces the van-
ishing and exploding gradient problem. There are many ways
to construct deep RNNs, and the most popular one is by stack-
ing multiple RNNs with residual connections [21]. The residual
connection is an important method to construct deep neural net-
works. Residual connections use the identity mappings as the
skip connections, which is formally described as

y = x + f(x), (12)

where x, and y are input and output, respectively. f is the neu-
ral network. By using identity mappings, the gradient signal can

directly propagate into lower layers. Bidirectional RNNs [6]
use two RNNs to process the same sequence in opposite direc-
tions, and concatenating the results of both RNNs to be the final
output. In this way, each output of bidirectional RNNs encodes
all the tokens in the sequence. An alternative to bidirectional
RNNs is alternating RNNs [22], which consists of RNNs in op-
posite directions in adjacent layers.

Besides the difficulty training of RNNs, another major draw-
back of RNNs is that RNNs are sequential models in nature,
which cannot benefit from the parallel computations provided
by modern GPUs. CNNs and SANs, however, which fully
exploit the parallel computation within sequences, are widely
used in newer NMT architectures.

Convolutional neural network (CNN) was first introduced
into NMT in 2013 [3]. However, it was not as successful as
RNNs until 2017 [14]. The main obstacle for applying CNNs is
its limited receptive field. Stacking L CNNs with kernel width
k can increase the receptive field from k to L · (k− 1) + 1. The
network needs to go deeper with large L and adopt large kernel
size k to model long sentences. However, learning deep CNNs
is challenging, and using large kernel size k may significantly
increase the complexity and parameters involved in CNNs.

(a)

(b)

Figure 8: Comparison between CNN and dilated CNN. (a) Two layers CNN
with filter width k = 3 for each layer. (b) Dilated CNN with filter width k = 3
for all layers, dilation rate r = 1 in layer 1 and r = 2 in layer 2.

One solution to increase the receptive field without using a
large k is through dilation [13]. Figure 8 shows the compari-
son between plain CNN and dilated CNN. Plain CNN can be
viewed as a special case of dilated CNN with a dilation rate
r = 1. The computation of dilated CNN is mathematically for-

6

.

.

(a)

.

.

(b)

Figure 9: Comparison between CNN and depthwise CNN. Each node in the
graph represents a neuron instead of a vector. (a) Plain CNN. We highlight the
computation of the first neuron in the output vector. (b) Depthwise CNN. Note
that the connections are significantly reduced compared with plain CNN.

mulated as

hl,t =

k∑
i=1

W(i)hl−1,t+(i−d k+1
2 e)×r

. (13)

StackingL dilated CNNs whereby the dilation rates are doubled
every layer, the receptive field increases to (2L−1) ·(k−1)+1.
As a result, the receptive field grows exponentially with L, as
opposed to linearly with L in plain CNN.

Another solution is to reduce the computations involved in
CNN. Depthwise convolution [23] reduces the complexity from
O(kd2) to O(kd) by performing convolution independently
over channels. Figure 9 depicts the comparison between CNN
and depthwise CNN. The output of the depthwise convolution
layer is defined as

hl,t =

k∑
i=1

w(i) � hl−1,t+i−d k+1
2 e

, (14)

where w(i) is the i-th column of weight matrix W ∈ Rk×d.
Lightweight convolution [24] further reduces the number of pa-
rameters of depthwise convolution through weight sharing.

.
.

.

.
.

.

Figure 10: An illustration of multi-head attention.

Self-attention network (SAN) [15] is a special case of atten-
tion network where the queries, keys, and values come from

the same sequence. Similar to CNN, SAN is trivial to paral-
lelize. Furthermore, Each output in SAN also has infinite recep-
tive fields, which is the same with RNN. In SAN, the queries,
keys, and values are typically obtained through a linear map of
the input representations. The scaled dot-product self-attention
mechanism can be formally described as

Attention(Q,K,V) = softmax(
QK>√

d
)V. (15)

Multi-head attention [15] is an extended attention network
with multiple parallel heads. Each head attends information
from different subspace across value vectors. As a result, multi-
head attention can perform more flexible transformations than
the single-head attention. We give an illustration of multi-head
attention in Figure 10.

The major disadvantage of SAN network is that it ignores the
ordering of words in the sequence. To remedy this, SAN needs
additional position encoding to differentiate orders. Vaswani
et al. [15] proposed a sinusoid style position encoding, which is
formulated as

timing(t, 2i) = sin(t/100002i/d), (16)

timing(t, 2i+ 1) = cos(t/100002i/d), (17)

where t is the position and i is the dimension index. Another
popular way of position encoding is to learn an additional posi-
tion embedding. Finally, the position encoding is added to each
word representation, so the same words with different positions
can have different representations.

Input
Embedding

Inputs Outputs
(shifted right)

+ +

N×

N×

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Input
Embedding

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Linear

Softmax

Output
Probabilities

Positional
Encoding

Positional
Encoding

Figure 11: The Transformer architecture.

7

L2R Decoder

<bos> Innovate for the future

Innovate for the future <eos>

Encoder

ChuangXin SuZao WeiLai <eos>

R2L Decoder

<bos>

<eos>future the for Innovate

future the for Innovate

(a) Bidirectional inference.

NAR Decoder

Innovate for the future <eos>

Encoder

ChuangXin SuZao WeiLai <eos>

(b) Non-autoregressive decoding.

Figure 12: Comparisons of different decoding strategies. (a) Bidirectional de-
coding: generates a sentence in both left-to-right (L2R) and right-to-left (R2L)
directions; (b) Non-autoregressive (NAR) decoding: generates a sentence at
one time.

2.2.4. Comparison of Fundamental Architectures
We take the state-of-the-art Transformer architecture [15] as

an example to put all things together. Figure 11 shows the ar-
chitecture of Transformer. The Transformer model relies solely
on attention networks, with additional sinusoid-style position
encoding added to input embedding. The Transformer network
consists of a stack of 6 encoder layers and 6 decoder layers.
Each encoder layer contains two sub-layers whereas each de-
coder layer contains three sub-layers. To stabilize optimization,
Transformer uses residual connection and layer normalization
in each sub-layer.

We summarize the comparison of fundamental NMT archi-
tectures in Table 2. We highlight several important aspects of
these fundamental architectures.

2.3. Bidirectional Inference and Non-autoregressive NMT
The dominate approach to NMT factorizes the conditional

probability P (y|x) from left to right (L2R) auto-repressively.
However, the factorization of the distribution is not unique. Re-
searchers [25, 26, 27, 28] have found that models with right-to-
left (R2L) factorization are complementary to L2R models. The
bidirectional inference is an approach to simultaneously gener-
ating translation with both L2R and R2L decoders. In addition
to auto-regressive approaches where each output word on previ-
ously generated outputs, non-autoregressive NMTs [29] avoids
this auto-regressive property and produces outputs in parallel,
allowing much lower latency during inference.

2.3.1. Bidirectional Inference
Ignoring the future context is another obvious weakness of

AR decoding. Thus, a natural idea is that the quality of transla-
tion will be improved if autoregressive models can “know” the
future information. From this perspective, many approaches
have been proposed to improve translation performance by ex-
ploring the future context. Some researchers proposed to model

both past and future context [30, 31, 32] and some others also
found that L2R and R2L autoregressive models can generate
complementary translations [25, 26, 27, 28]. For instance, Zhou
et al. [28] analyzed the translation accuracy of the first and last
4 tokens for L2R and R2L models, respectively. The statistical
results show that, in Chinese-English translation, L2R performs
better in the first 4 tokens while R2L translates better in the last
4 tokens.

Based on the findings mentioned above, a number of methods
have been proposed to combine the advantages of L2R and R2L
decoding. These approaches are collectively referred to as bidi-
rectional decoding. Bidirectional decoding based methods can
be mainly fall into four categories [33]: (1) agreement between
L2R and R2L [25, 34, 35], (2) rescore with bidirectional decod-
ing [25, 36], (3) asynchronous bidirectional decoding [27, 37],
and (4) synchronous bidirectional decoding [28, 38, 39].

Mathematically, the L2R translation order is rather arbitrary,
and other arrangements such as R2L factorization are equally
correct:

P (y|x) =

T∏
t=1

P (yt|y<t,x)︸ ︷︷ ︸
L2R model

=

T∏
t=1

P (yt|y>t,x)︸ ︷︷ ︸
R2L model

. (18)

Based on this theoretical assumption, Liu et al. [25], Yang et al.
[34], and Zhang et al. [35] proposed joint training schemes in
which each direction is used as a regularizer for the other di-
rection. Empirical results show that these methods can lead
to significant improvements compared with standard L2R and
R2L models.

Another common scheme to combine L2R and R2L trans-
lations is rescoring (also known as reranking). A strong
L2R model firstly produces an n-best list of translations, and
then an R2L model rescores each translation in the n-best
list [25, 36, 40]. As the scores from L2R and R2L directions
are based on complementary models, the quality of translation
can be improved by rescoring. Recently, Zhang et al. [27] in-
troduced a new strategy to exploit both L2R and R2L models.
They named this method asynchronous bidirectional decoding
(ASBD), which first produces outputs (hidden states) by an R2L
model and then uses these outputs to optimize the L2R model.
ASBD can be done in three steps: The first step is to train a
R2L model with bilingual corpora. The second step is to ob-
tain outputs for each given source sentence using the trained
R2L model. Finally, the output of R2L model is used as the ad-
ditional context with the training data to train the L2R model.
Thanks to incorporating the future information from the R2L
model, the performance of L2R model can be substantially im-
proved.

Although ASBD improves the quality of translation, it also
incurs other problems. The L2R and R2L models are trained
separately so that they have no chance to interact with each
other. Besides, the L2R model translates source sentences
based on the outputs of an R2L model, this degrades the effi-
ciency of inference. To address these problems, Zhou et al. [28]
further proposed a synchronous bidirectional decoding (SBD)
method which generates translations using both L2R and R2L

8

Model Encoder Decoder Complexity V.R. PathE PathD
RCTM 1 [3] CNN RNN O(S2 + T) No S T
RCTM 2 [3] CNN RNN O(S2 + T) Yes S T

RNNENCDEC/SEQ2SEQ [4, 5] RNN RNN O(S + T) No S + T T
RNNSEARCH [6] RNN RNN O(ST) Yes 1 T
BYTENET [13] CNN CNN O(S + T) Yes c c

CONVSEQ2SEQ [14] CNN CNN O(ST) Yes 1 c
TRANSFORMER [15] SAN SAN O(S2 + ST + T 2) Yes 1 1

Table 2: Comparison of fundamental architectures. V.R. denotes whether the architecture employs variable representation. PathE denotes the longest path between
the source and target tokens. PathD denotes the longest path between two target tokens.

inference synchronously and interactively. Specifically, SBD
uses a new synchronous attention model to allow both L2R and
R2L models “communicating” with each other. As shown in
Figure 12a, the dotted arrows illustrate interactions between
L2R and R2L decoding. Zhou et al. [28] also designed a variant
of the standard beam search algorithm to hold L2R and R2L de-
coding concurrently. The idea behind this algorithm is to main-
tain that each half beam contains L2R and R2L predictions, re-
spectively. Empirical results show that SBD can significantly
improve performance with a slight cost to decoding speed.

Mehri and Sigal [41] proposed a novel middle-out decoder
architecture that begins from an initial middle-word and simul-
taneously expands the sequence in both L2R and R2L direc-
tions. Zhou et al. [38] also proposed a similar method that al-
lows L2R and R2L inferences to start concurrently from the left
and right sides, respectively. Both L2R and R2L inferences ter-
minate at the middle position. Extensive experiments demon-
strate that this method can improve not only the accuracy of
translation but also decoding efficiency.

2.3.2. Non-autoregressive NMTs
To reduce the latency during inference, Gu et al. [29] first

proposed the non-autoregressive NMT (NAT) to generate the
target words in parallel. Formally, given the source sentence x,
the probability of the target sentence y is modeled as follows:

PNA(y|x;θ) = PL(T |x;θ) ·
T∏

t=1

P (yt|x;θ), (19)

where PNA(y|x;θ) is the NAT model, PL(T |x;θ) is a length
sub-model to determine the length of target sentence, and θ de-
notes the set of model parameters.

How to predict the length of target sentence (i.e., PL(T |x;θ)
in Eq. (19)) is critical for NAT. Gu et al. [29] proposed a fertility
predictor to predict the length of translation. The fertility of a
word in the source side determines how many target words it is
aligned to. The fertility predictor can be denoted as

PF (f |x;θ) =

S∏
s=1

P (fs|x;θ), (20)

where f = {f1, · · · , fS} is the fertility of the source sentence
that consists of S words, and θ is the set of parameters. At
the training phase, the gold fertility of each sentence pair in

the training data can be obtained by a word alignment system.
At the inference phase, the length of the target sentence can be
determined by the fertility predictor:

T̂ =

S∑
s=1

f̂s, (21)

f̂s = argmax
fs

P (fs|x; θ̂), (22)

where T̂ is the number of words in the translation of the source
sentence x, and θ̂ is the set of learned parameters.

Different from autoregressive NMT models that take the pre-
vious words (ie., y<t) as the input to predict the next target
word yt, NAT lacks such history information. Gu et al. [29] also
noticed that missing the input of the decoder can greatly impair
translation quality. Thus, the authors proposed to copy each
source token to the decoder, and the times each input token to
be copied is its “feritility”. Gu et al. [29] also used knowledge
distillation [42], which employs strong autoregressive models
as the “teachers” to improve the performance. Knowledge dis-
tillation has proven necessary for non-autoregressive translation
[43, 29, 44, 45, 46].

Despite the promising success of NAT, which can boost the
decoding efficiency by about 15 times speedup compared with
vanilla Transformer, NAT suffers from considerable quality
degradation. Recently, many methods have been proposed to
narrow the performance gap between non-autoregressive NMT
and autoregressive NMT [44, 47, 48, 49, 50, 51, 52, 53, 46, 54].

To take advantage of both autoregressive NMT and non-
autoregressive NMT, Wang et al. [47] designed a semi-
autoregressive Transformer (SAT) model. SAT keeps the au-
toregressive property in global but performs parallel transla-
tion in local. Specifically, SAT produces K sequential words
per time-step independently to others. Consequently, SAT can
balance autoregressive NMT (K = 1) and non-autoregressive
NMT (K = T) by adjusting the value of K. Akoury et al.
[53] moved a further step to propose a syntactically supervised
Transformer (SynST), which first autoregressively predicts a
chunked parse tree and then generates all words in one shot
conditioned on the predicted parse.

A critical issue of NAT is that NAT copies the source words
as the input of the decoder while ignores the difference between
the source and target semantics. To address this problem, Guo
et al. [48] proposed to use a phrase table to covert source words

9

to target words. They adopt a maximum match algorithm to
greedily segment the source sentence into several phrases and
then map these source phrases into target phrases by retrieving
a pre-defined phrase table. Thanks to the enhanced decoder
input, translation quality is significantly improved.

Inspired by the mask-predict task proposed by Devlin et al.
[55], Ghazvininejad et al. [46] introduced a conditioned masked
language model (CMLM) to generate translation by iterative re-
finement. CMLM trains the conditioned language model using
a mask-predict manner and produces target sentences by iter-
ative decoding during inference. Specifically, in the training
phase, CMLM first randomly masks the words in the target sen-
tence and then predicts these masked words. In the inference,
CMLM generates the entire target sentence in a preset number
of decoding iteration N . At iteration n ∈ [1, N], the decoder
input is the entire target sentence with T − T (N−t+1)

N words
masked. The decoding process starts with a fully-masked target
sentence and the words with the lowest prediction probabilities
will be masked. With a proper number of decoding iteration,
CMLM can effectively close the gap with fully autoregressive
models and maintain the decoding efficiency.

2.4. Alternative Training Objectives

NMT trained with maximum likelihood estimation or MLE
have achieved state-of-the-art results on various language
pairs [7]. Despite the remarkable success, Ranzato et al. [56]
indicate two drawbacks of MLE for NMT. First, NMT models
are not exposed to their errors during training, which is referred
to as the exposure bias problem. Second, MLE is defined at
word-level rather than sentence-level. Due to these limitations,
researchers have investigated several alternative objectives.

Ranzato et al. [57] introduce Mixed Incremental Cross-
Entropy Reinforce (MIXER) for sequence-level training. The
MIXER algorithm borrows ideas from reinforcement learning
for backpropagating gradients from non-differentiable metrics
such as BLEU. Wu et al. [58] give a study of reinforcement
learning for NMT. Shen et al. [59] proposed minimum risk
training (MRT) to alleviate the problem. In MRT, the risk is
defined as the expected loss with respect to the posterior distri-
bution:

L(θ) =
S∑

s=1

Ey|x(s);θ

[
∆(y,y(s))

]
(23)

=

S∑
s=1

∑
y∈Y(x(s))

P (y|x(s);θ)∆(y,y(s)), (24)

where Y(x(s)) is a set of all possible candidate translations for
x(s); ∆(y,y(s)) measures the difference between model pre-
diction and gold-standard. Shen et al. [59] indicate three advan-
tages for MRT over MLE. Firstly, MRT direct optimize NMT
with respect to evaluation metrics. Secondly, MRT can incor-
porate with arbitrary loss functions. Finally, MRT is transpar-
ent to architectures and can be applied to any end-to-end NMT
systems. MRT achieves significant performance improvements
than MLE training for RNNSearch. However, recent literature

[60] has also pointed out the weakness of reinforcement learn-
ing for NMT, including discussion about optimization goals and
difficulty in convergence.

Efforts on improving training objectives reveal the art of
translating motivation into functions and rewrite the conven-
tional loss function with them or integrating them into it as reg-
ularizers. A collection of classical structured prediction losses
are reviewed and compared in Edunov et al. [61], including
MLE, sequence-level MLE, MRT, and max-margin learning.
Yang et al. [62] leveraged the idea of max-margin learning in
reducing word omission errors in NMT. They artificially con-
structed negative examples by omitting words in target ref-
erence sentences, forcing the NMT model to assign a higher
probability to a ground-truth translation and a lower probabil-
ity to an erroneous translation. Wieting et al. [63] aimed at
improving the semantic similarity between ground-truth refer-
ences and translation outputs from NMT systems. They pro-
posed to use a margin-based loss as an alternative reward func-
tion, encouraging NMT models to output semantically correct
hypotheses even if they mismatch with the reference in the lex-
icon. Chen et al. [64] aimed at improving model capability of
capturing long-range semantic structure. They proposed to ex-
plicitly model the source-target alignment with optimal trans-
port (OT), and couple the OT loss with the MLE loss function.
Kumar and Tsvetkov [65] aimed at improving model efficiency
and reducing the memory footprint of NMT models. Observing
that the softmax layer usually takes considerable memory usage
and the longest computation time, they proposed to replace the
softmax layer with a continuous embedding layer, using Von
Mises-Fisher distribution to implement soft ranking as softmax
layer functions. As a result, the novel probabilistic loss enables
NMT models to train much faster and handle very large vocab-
ularies.

2.5. Using Monolingual Data and Unsupervised NMT

The amount of parallel data significantly affects the training
of parameters as NMT is found to be data-hungry [66]. Un-
fortunately, large-scale parallel corpora are not available for the
vast majority of language pairs. In contrast, monolingual cor-
pora are abundant and much easy to obtain. As a result, it is
important to augment the training set with monolingual data.

2.5.1. Using Monolingual Data
As NMT is trained in an end-to-end way, it raises the dif-

ficulties in taking advantage of monolingual data. In the past
few years researchers have proposed various methods to make
use of the source- and target-side monolingual data in neural
machine translation.

For target-side monolingual data, early attempts try to in-
corporate a language model trained on large-scale monolingual
data into NMT. Gulcehre et al. [67] proposed two ways to in-
tegrate a language model. One way is called shallow fusion,
which uses a language model during decoding to rescore the n-
base list. Another way is called deep fusion, which combines
the decoder and language model with a controller mechanism.
However, the improvements of these approaches are limited.

10

Another way to use target-side monolingual data is called
Back-translation (BT) [68]. BT can make use of target-side
monolingual data without changing the architecture of NMT. In
Sennrich et al. [68], they first trained a target-to-source trans-
lation model using the parallel corpus. Then, the target-side
monolingual data are used to build a synthetic parallel cor-
pus, whose source sides are generated by the target-to-source
translation model. Finally, the concatenation of parallel corpus
and synthetic parallel corpus is used to learn a source-to-target
translation model. Although the architecture and decoding al-
gorithm is kept unchanged, the monolingual data is fully uti-
lized to improve the translation quality. The authors attributed
the effectiveness of using monolingual data to domain adapta-
tion effects, reductions of overfitting, and improved fluency. BT
has shown to be the most simple and effective method to lever-
age target-side monolingual data [68, 69]. It is especially use-
ful when only a small number of parallel data is available [70].
Imamura et al. [71] found that the diversities of source sen-
tences affect the performance of BT. In the meantime, Edunov
et al. [72] analyzed BT extensively and showed that noised-
BT, which builds a synthetic corpus by sampled source sen-
tences or noised output of beam-search, leads to higher accu-
racy. Caswell et al. [73] investigated the role of noise in noised-
BT. They revealed that the noises work in a way of making
the model be able to distinguish the synthetic data and genuine
data. The model can further take advantages of helpful signal
and ignore harmful signal. As a result, they proposed a sim-
ple method called tagged-BT, which appends a preceding tag
(e.g., <BT>) to every synthetic source sentence. Wang et al.
[74] proposed to consider uncertainty-based confidence to help
NMT models distinguish synthetic data from authentic data.

Besides target-side monolingual data, source-side monolin-
gual data are also important resources to improve the trans-
lation quality of semi-supervised neural machine translation.
Zhang and Zong [75] explored two ways to leverage source-
side monolingual data. The former one is knowledge distil-
lation (also called self-training), which utilizes the source-to-
target translation model to build a synthetic parallel corpus. The
latter is multi-task learning that simultaneously learns transla-
tion and source sentence reordering tasks.

There are many works to make use of both source- and target-
side monolingual data. Hoang et al. [76] found that the trans-
lation quality of the target-to-source model in BT matters and
then proposed iterative back-translation, making the source-to-
target and target-to-source to enhance each other iteratively.
Cheng et al. [77] presented an approach to train a bidirectional
neural machine translation model, which introduced autoen-
coders on the monolingual corpora with source-to-target and
target-to-source translation models as encoders and decoders by
appending a reconstruction term to the training objective. He
et al. [78] proposed a dual-learning mechanism, which utilized
reinforcement learning to make the source-to-target and target-
to-source model to teach each other with the help of source-
and target-side language models. Zheng et al. [79] proposed a
mirror-generative NMT model to integrate source-to-target and
target-to-source NMT models and both-side language models,
which can learn from monolingual data naturally.

Pre-training is an alternative way to utilize monolingual data
for NMT, which is shown to be beneficial by further com-
bining with back-translation in the supervised and unsuper-
vised NMT scenario [80, 81]. Recently, pre-training has at-
tracted tremendous attention because of its effectiveness on
low-resource language understanding and language generation
tasks [82, 83, 55]. Researchers found that models trained
on large-scale monolingual data can learn linguistics knowl-
edge [84]. These knowledge can be transferred into down-
stream tasks by initializing the task-oriented models with the
pre-trained weights. Language modeling is a commonly used
pre-training method. The drawback of standard language mod-
eling is that it is unidirectional, which may be sub-optimal as
a pre-training technique. Devlin et al. [55] proposed a masked
pre-training language model (MLM) objective, which allows
the model to make full use of context at the price of losing the
ability to generate sequences. Combining language modeling
and masking with sequence-to-sequence models, however, do
not suffer from these limitations [80, 85, 81].

Edunov et al. [86] fed the output representations of
ELMO [82] to the encoder of NMT. Zhu et al. [87] proposed
to fuse extracted representations into each layer of encoder
and decoder through attention mechanism. Song et al. [80]
proposed to pre-train a sequence-to-sequence model first, and
then finetune the pre-trained model on translation task directly.
BART [85] took various noising method to pre-train a denois-
ing sequence-to-sequence model and then finetune the model
with an additional encoder that replaces the word embeddings
of the pre-trained encoder. Liu et al. [88] proposed mBART
which is trained by applying BART to large-scale monolingual
data across many languages.

2.5.2. Unsupervised NMT
Due to insufficient parallel corpus, it is not feasible to use

supervised methods to train an NMT model on many language
pairs. Unsupervised neural machine translation aims to obtain
a translation model without using parallel data. Apparently, un-
supervised machine translation is much more difficult than the
supervised and semi-supervised settings.

Unsupervised neural machine translation is composed of
three parts. First, by the virtue of recent advances on unsu-
pervised cross-lingual embeddings [89, 90] and word-by-word
translation systems [91], the unsupervised translation mod-
els can be initialized by weak translation models with funda-
mental cross-lingual information. Second, denoising autoen-
coders [92] are used to embed the sentences into dense latent
representations. The sentences of different languages are as-
sumed to be embedded into the same latent space so that the
latent representations of source sentences can be decoded into
the target language. Third, iterative back-translation is used to
strengthen the source-to-target and target-to-source translation
models. Lample et al. [93] and Artetxe et al. [94] first success-
fully built an unsupervised NMT system as described above.
Specifically, Lample et al. [93] utilizes a discriminator to force
the encoder to embed sentences of each language to the same
latent space.

11

<bos> Innovate for the future

..
.

..
.

..
.

..
.

..
.

Decoder

..
.

..
.

..
.

..
.

..
.

Innovate for the future <eos>

(a) Unidirectional language model pre-training.

<mask> for <mask> future <eos>

..
.

..
.

..
.

..
.

..
.

Encoder

..
.

..
.

..
.

..
.

..
.

Innovate the

(b) Bi-directional language model pre-training.

<mask> for future <eos>

..
.

..
.

..
.

..
.

Encoder

<bos> Innovate for the future

..
.

..
.

..
.

..
.

..
.

Decoder

..
.

..
.

..
.

..
.

..
.

Innovate for the future <eos>

(c) Sequence-to-sequence model pre-training.

Figure 13: Three commonly used ways for pre-training.

While Lample et al. [93] used a shared encoder and a shared
decoder, Artetxe et al. [94] adopt a shared encoder but two sepa-
rate decoder approach. Yang et al. [95] conjectured that sharing
of the encoder and decoder between two languages may lose
their language characteristics. Therefore they proposed lever-
aging two separate encoders with some shared layers and us-
ing two different GANs to restrict the latent representations.
Artetxe et al. [96] and Lample et al. [97] found that an unsuper-
vised statistical machine translation system with iterative back-
translation can easily outperform the unsupervised NMT coun-
terpart. Lample et al. [97] summarized that initialization, lan-
guage modeling, and iterative back-translation are three princi-
ples in fully unsupervised MT and they further found that com-
bining unsupervised SMT and unsupervised NMT can reach
better performances.

Ren et al. [98] suggested that the noises and errors existed in
pseudo-data can be accumulated and hinder the improvements
during iterative back-translations. Therefore, they proposed to
use SMT which is less sensitive to noises as posterior regular-
izations to unsupervised NMT. As the unsupervised NMT is
usually initialized by unsupervised bilingual word embeddings
(UBWE), Sun et al. [99] proposed to utilize UBWE agreement
to enhance unsupervised NMT. Wu et al. [100] considered that
pseudo sentences predicted by weak unsupervised MT systems
are usually of low quality. To alleviate this issue, they pro-

posed an extract-edit approach, which is an alternative to back-
translation. First, they extracted the most relevant target sen-
tences from target monolingual data given the source sentence.
Then, extracted target sentences were edited to be aligned with
the source sentences. This method makes it possible to use
real sentence pairs to train the unsupervised NMT system. Ren
et al. [101] also proposed a similar retrieve-and-rewrite method
to initialize an unsupervised SMT system. Artetxe et al. [102]
improved unsupervised SMT by exploiting subword informa-
tion, developing a theoretically well-founded unsupervised tun-
ing method, and incorporating a joint refinement procedure. Fi-
nally, they utilized the improved unsupervised SMT to initial-
ize NMT model and get state-of-the-art results. As a unique
method to utilize monolingual data, cross-lingual pre-trained
models are used by Lample and Conneau [103] to initialize un-
supervised MT systems.

2.6. Open Vocabulary

NMT typically operates with a fixed vocabulary. Due to prac-
tical reasons such as computational concerns and memory con-
straints, the vocabulary size of NMT models often ranges from
30k to 50k. For word-level NMT, the limited size of vocabu-
lary results in a large number of unknown words. Therefore,
word-level NMT is unable to translate these words and per-
forms poorly in open-vocabulary settings [5, 6].

12

Although word-level NMT is unable to translate out-of-
vocabulary words, character-level NMT do not have this prob-
lem. By splitting words into characters, the vocabulary size is
much smaller and every rare word can be represented. Chung
et al. [104] found that the NMT model with subword-level en-
coder and character-level decoder can also work well. Lee
et al. [105] introduced a fully character-level NMT with con-
volutional network and found that character-to-character NMT
is suitable in many-to-one multilingual setting. Luong and
Manning [106] built hybrid systems that translate mostly at
the word level and consult the character components for rare
words. Passban et al. [107] proposed an extension to the model
of Chung et al. [104], which works at the character level and
boosts the decoder with target-side morphological information.
Chen et al. [108] proposed an NMT model at different levels of
granularity with a multi-level attention. Gao et al. [109] found
that self-attention performs very well on character-level trans-
lation.

Character-level NMT also has its imperfection, splitting
words into characters results in longer sequences in which
each symbol contains less information, creating both model-
ing and computational challenges [110]. Other than word-level
and character-level methods, subword-level method is another
choice to model input and output sentences. Sennrich et al.
[111] first adapted byte-pair-encoding (BPE) to word segmen-
tation task, which is a simple but effective method. BPE making
the NMT model capable of open-vocabulary translation by en-
coding rare and unknown words as sequences of subword units.
This method reaches a compromise between vocabulary size
and sequence length with stabilized better performance over
word- and character-level methods. Moreover, it is an unsuper-
vised method with few hyper-parameters, making it the most
commonly used method for word segmentation for neural ma-
chine translation and text generation. Kudo [112] presented a
simple regularization method, namely subword regularization,
to improve the robustness of subword-level NMT. Provilkov
et al. [113] introduced BPE-dropout to regularize the subword
segmentation algorithm BPE, which is more compatible with
conventional BPE than the method proposed by Kudo [112].
Wang et al. [114] investigated byte-level subwords, specifically
byte-level BPE (BBPE), which is more efficient than using pure
bytes only.

2.7. Prior Knowledge Integration
As NMT modeling the entire translation process with a neu-

ral network, it is hard to integrate knowledge into NMT. On
the one hand, existing linguistic knowledge such as dictionar-
ies is potentially useful for NMT. On the other hand, NMT of-
ten leads to over-translation and under-translation [115], which
raises the need for adding prior knowledge to NMT.

One line of studies focus on inducing lexical knowledge into
NMT models. Zhang et al. [116] proposed a general framework
that can integrate prior knowledge into NMT models through
posterior regularization and found that bilingual dictionary is
useful to improve NMT models. Morishita et al. [117] found
that feeding hierarchical subword units to different modules of
NMT models can also improve the translation quality. Liu et al.

[118] proposed a novel shared-private word embedding to cap-
ture the relationship of different words for NMT models. Chen
et al. [119] distinguished content words and functional words
depending on the term frequency inverse document frequency
(i.e., TF-IDF) and then added an additional encoder and an ad-
ditional loss for content words. Weller-Di Marco and Fraser
[120] studied strategies to model word formation in NMT to
explicitly model fusional morphology.

Modeling the source-side syntactic structure has also drawn
a lot of attention. Eriguchi et al. [121] extended NMT models
to an end-to-end syntactic model, where the decoder is softly
aligned with phrases at the source side when generating a target
word. Sennrich and Haddow [122] explored external linguis-
tic information such as lemmas, morphological features, POS
tags and dependency labels to improve translation quality. Hao
et al. [123] presented a multi-granularity self-attention mech-
anism to model phrases which are extracted by syntactic trees.
Bugliarello and Okazaki [124] proposed the Parent-Scaled Self-
Attention to incorporate dependency tree to capture the syn-
tactic knowledge of the source sentence. There are also some
works that use multi-task training to learn source-side syntactic
knowledge, in which the encoder of a NMT model is trained to
perform POS tagging or syntactic parsing [125, 126].

Another line of studies directly model the target-side syntac-
tic structures [127, 128, 129, 130, 131, 132, 133, 134]. Aha-
roni and Goldberg [130] trained a end-to-end model to directly
translate source sentences into constituency trees. Similar ap-
proaches are proposed to use two neural models to generate the
target sentence and its corresponding tree structure [128, 129].
Gū et al. [127] proposed to use a single model to perform trans-
lation and parsing at the same time. Yang et al. [133] introduced
a latent variable model to capture the co-dependence between
syntax and semantics. Yang et al. [134] trained a neural model
to predict the soft template of the target sentence conditioning
only on the source sentence and then incorporated the predicted
template into the NMT model via a separate template encoder.

2.8. Interpretability and Robustness
Despite the remarkable progress, it is hard to interpret the

internal workings of NMT models. All internal information in
NMT is represented as high-dimensional real-valued vectors or
matrices. Therefore, it is challenging to associate these hidden
states with language structures. The lack of interpretability has
made it very difficult for researchers to understand the transla-
tion process of NMT models.

In addition to interpretability, the lack of robustness is a se-
vere challenge for NMT systems as well. With small pertur-
bations in source inputs (also referred to as adversarial exam-
ples), the translations of NMT models may lead to significant
erroneous changes [135, 136]. The lack of robustness of NMT
limits its application on tasks that require robust performance
on noisy inputs. Therefore, improving the robustness of NMT
has gained increasing attention in the NMT community.

2.8.1. Interpretability
Efforts have been devoted to improving the interpretability

of NMT systems in recent works. Ding et al. [137] proposed to

13

visualize the internal workings of the RNNSearch [6] architec-
ture. With layer-wise relevance propagation [138], they com-
puted and visualized the contribution of each contextual word
to arbitrary hidden states in RNNSearch. Bau et al. [139] share
similar motivations with Ding et al. [137]. Their basic assump-
tion is that the same neuron in different NMT models captures
similar syntactic and semantic information. They proposed to
use several types of correlation coefficients to measure the im-
portance of each neuron. As a result, by identifying important
neurons and controlling their activation, the translation process
of NMT systems can be controlled. Strobelt et al. [140] also put
effort into visualizing the working process of RNNSearch. The
highlights of their work lie in the utilization of training data.
When an NMT system decodes some words, their visualization
system provides the most relevant training corpora by using the
nearest neighbor search. In case of translation errors, the sys-
tem can locate the erroneous outputs directly in the training set
by showing its origin cause. As a result, this function provides
better assistants and makes it easy for developers to adjust the
model and the data.

With the tremendous success of the Transformer architec-
ture [15], the NMT community have shown increasing inter-
est in understanding and interpreting Transformer. He et al.
[141] generalized the idea of layer-wise relevance to word im-
portance by attributing the NMT output to every input word
through a gradient-based method. The calculated word impor-
tance illustrates the influence of each source words, which also
serves as an implication of under-translation errors. Raganato
and Tiedemann [142] analyzed the internal representations of
Transformer encoder. Utilizing the attention weights in each
layer, they extract relation among each word in the source sen-
tence. They designed four types of probing tasks to analyze the
syntactic and semantic information encoded by each layer rep-
resentation and test their transferability. Voita et al. [143] also
proposed to analyze the bottom-up evolution of representations
in Transformer with canonical correlation analysis (CCA). By
estimating mutual information, they studied how information
flows in Transformer. Stahlberg et al. [144] proposed an op-
eration sequence model to interpret NMT. Based on the trans-
lation outputted by the Transformer system, they proposed ex-
plicit modeling of the word reordering process and provided
explicit word alignment between the reordered target-side sen-
tence and the source sentence. As a result, one can track the
reordering process of each word’s information as they are ex-
plicitly aligned with the source side. Recent work [145] also
provided a theoretical understanding of Transformer by prov-
ing that Transformer networks are universal approximators of
sequence-to-sequence functions.

2.8.2. Robustness
Belinkov and Bisk [135] first investigated the robustness of

NMT. They pointed out that both synthetic and natural noise
can severely harm the performance of NMT models. They
experimented with four types of synthetic noise and lever-
aged structure-invariant representation and adversarial training
to improve the robustness of NMT. Similarly, Zhao et al. [146]
proposed to map the input sentence to a latent space with gen-

erative adversarial networks (GAN) and search for adversarial
examples in that space. Their approach can produce seman-
tically and syntactically coherent sentences that have negative
impacts on the performance of NMT models.

Ribeiro et al. [147] proposed semantic-preserving adversarial
rules to explicitly induce adversarial examples. This approach
provides a better guarantee for the adversarial examples to sat-
isfy semantically equivalence property. Cheng et al. [148] pro-
posed two types of approaches to generating adversarial exam-
ples by perturbing the source sentence or the internal represen-
tation of the encoder. By integrating the effect of adversarial
examples into the loss function, the robustness of neural ma-
chine translation is improved by adversarial training.

Ebrahimi et al. [149] proposed a character-level white-box
attack for character-level NMT. They proposed to model the
operations of character insertion, deletion, and swapping with
vector computations so that the generation of adversarial ex-
amples can be formulated with differentiable string-edit opera-
tions. Liu et al. [88] proposed to jointly utilize textual and pho-
netic embedding in NMT to improve robustness. They found
that to train a more robust model, more weights should be put on
the phonetic rather than textual information. Cheng et al. [136]
proposed doubly adversarial inputs to improve the robustness of
NMT. Concretely, they proposed to both attack the translation
model with adversarial source examples and defend the transla-
tion model with adversarial target inputs for model robustness.
Zou et al. [150] utilized reinforcement learning to generate
adversarial examples, producing stable attacks with semantic-
preserving adversarial examples. Cheng et al. [151] proposed a
novel adversarial augmentation method that minimizes the vic-
inal risk over virtual sentences sampled from a smoothly inter-
polated embedding space around the observed training sentence
pairs. The adversarial data augmentation method substantially
outperforms other data augmentation methods and achieves sig-
nificant improvements in translation quality and robustness. For
the better exploration of robust NMT, Michel and Neubig [152]
proposed an MTNT dataset, source sentences of which are col-
lected from Reddit discussion, and contain several types of
noise. Target referenced translations for each source sentence,
in contrast, are clear from noise. Experiments showed that cur-
rent NMT models perform badly on the MTNT dataset. As a
result, this dataset can serve as a testbed for NMT robustness
analysis.

3. Resources

3.1. Parallel Data
Bilingual parallel corpora are the most important resources

for NMT. There are several publicly available corpora, such as
the datasets provided by WMT1, IWSLT2, and WAT 3. Table 3
lists the available domains and language pairs in these work-
shops.

1http://www.statmt.org/wmt20/index.html
2http://iwslt.org/doku.php
3http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2020/

index.html

14

http://www.statmt.org/wmt20/index.html
http://iwslt.org/doku.php
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2020/index.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2020/index.html

Workshop Domain Language Pair

WMT20
News zh-en, cz-en, fr-de, de-en, iu-en, km-en, ja-en, ps-en, pl-en, ru-en, ta-en
Biomedical en-eu, en-zh, en-fr, en-de, en-it, en-pt, en-ru, en-es
Chat en-de

IWSLT20
TED Talks en-de
e-Commerce zh-en, en-ru
Open Domain zh-ja

WAT20

Scientific Paper en-ja, zh-ja
Business Scene Dialogue en-ja
Patent zh-ja, ko-ja, en-ja
News ja-en, ja-ru
IT and Wikinews hi-en, th-en, ms-en, id-en

Table 3: Domain and language pairs provided by WMT20, IWSLT20, WAT20.

Source Fr-En Es-En De-En Pt-En Ru-En Ar-En Zh-En Ja-En Hi-En
OPUS [153] 200.6M 172.0M 93.3M 77.7M 75.5M 69.2M 31.2M 6.2M 1.7M

Table 4: Number of sentences that available at OPUS for major languages to English.

Besides the aforementioned machine translation workshops,
we also recommend OPUS 4 to search resources for training
NMT models, which gathers parallel data for a large number of
language pairs. We list the number of sentence pairs that are
available for major languages to Enligsh in Table 4. OPUS also
provides the OPUS-100 corpus for multilingual machine trans-
lation research [154], which is an English-centric multilingual
corpus covering over 100 languages.

3.2. Monolingual Data
Monolingual data are also valuable resources for NMT. The

Common Crawl Foundation 5 provides open access to high
quality crawled data for over 40 languages. The CCNET
toolkit 6 [155] can be used to download and clean Common
Crawl texts. Wikipedia provides database dump 7 that can
be used to extract monolingual data, which can be download
using WIKIEXTRACTOR 8. WMT 2020 also provides sev-
eral monolingual training data, which consists of data collected
from NewsCrawl, NewsDicussions, Europarl, NewsCommen-
tary, CommonCrawl, and WikiDumps.

4. Tools

With the rapid advances of deep learning, many open-
source deep learning frameworks have emerged, with Tensor-
Flow [156] and PyTorch [157] as representative examples. At
the same time, we have also witnessed the rapid development
of open-source NMT toolkits, which significantly boosted the
research progress of NMT. In this section, we will give a sum-
marization of popular open-source NMT toolkits. Besides, we

4http://opus.nlpl.eu
5https://commoncrawl.org/
6https://github.com/facebookresearch/cc_net
7https://dumps.wikimedia.org
8https://github.com/attardi/wikiextractor

also introduce tools that are useful for evaluation, analysis, and
data pre-processing.

4.1. Open-source NMT Toolkits

We summarize some popular open-source NMT toolkits on
GitHub in Table 5. The users can get the source codes of these
toolkits directly from GitHub. We shall give a brief description
of these projects.

Tensor2Tensor. TENSOR2TENSOR [158] is a library of deep
learning models and datasets based on TensorFlow [156]. The
library was mainly developed by the Google Brain team. TEN-
SOR2TENSOR provides implementation of several NMT archi-
tectures (e.g., Transformer) for the translation task. The users
can run TENSOR2TENSOR easily on CPU, GPU, and TPU, ei-
ther locally or on Cloud.

FairSeq. FAIRSEQ [159] is a sequence modeling toolkit de-
veloped by Facebook AI Research. The toolkit is based on Py-
torch [157] and allows the users to train custom models for
the translation task. FAIRSEQ implements traditional RNN-
based models and Transformer models. Besides, it also in-
cludes CNN-based translation models (e.g., LightConv and Dy-
namicConv).

Nmt. NMT [160] is a toolkit developed by Google Research.
The toolkit implements the GNMT architecture [8]. Besides,
the NMT project also provides a nice tutorial for building a
competitive NMT model from scratch. The codebase of NMT
is high-quality and lightweight, which is friendly for users to
add customized models.

OpenNMT. OPENNMT is an open-source NMT toolkit de-
veloped by the collaboration of Harvard University and SYS-
TRAN. The toolkit currently maintains two implementations:
OPENNMT-PY and OPENNMT-TF. OPENNMT is proven
to be research-friendly and production-ready. The OpenNMT
project also provides CTRANSLATE2 as a fast inference engine
that supports both CPU and GPU.

15

http://opus.nlpl.eu
https://commoncrawl.org/
https://github.com/facebookresearch/cc_net
https://dumps.wikimedia.org
https://github.com/attardi/wikiextractor

Name Language Framework Status
TENSOR2TENSOR Python TensorFlow Deprecated

FAIRSEQ Python PyTorch Active
NMT Python TensorFlow Deprecated

OPENNMT Python/C++ PyTorch/TensorFlow Active
SOCKEYE Python MXNet Active
NEMATUS Python Tensorflow Active
MARIAN C++ - Active
THUMT Python PyTorch/TensorFlow Active

NMT-KERAS Python Keras Active
NEURAL MONKEY Python TensorFlow Active

Table 5: Popular Open-source NMT toolkits on GitHub, the ordering is determined by the number of stars as the date of December 2020.

Sockeye. SOCKEYE [161] is a versatile sequence-to-
sequence toolkit that is based on MXNet [162]. SOCKEYE is
maintained by Amazon and powers machine translation ser-
vices such as Amazon Translate. The toolkit features state-
of-the-art machine translation models and fast CPU inference,
which is useful for both research and production.

Nematus. NEMATUS is an NMT toolkit developed by the
NLP Group at the University of Edinburgh. The toolkit is based
on TensorFlow and supports RNN-based NMT architectures as
well as the TRANSFORMER architecture. In addition to the
toolkits, NEMATUS also released high-performing NMT mod-
els covering 13 translation directions.

Marian. MARIAN [163] is an efficient and self-contained
NMT framework currently being developed by the Microsoft
Translator team. The framework is written entirely in C++ with
minimal dependencies. Marian is widely deployed by many
companies and organizations. For example, Microsoft Trans-
lator currently adopts Marian as its neural machine translation
engine.

THUMT. THUMT [164] is an open-source toolkit for neu-
ral machine translation developed by the NLP Group at Ts-
inghua University. The toolkit includes TensorFlow, and Py-
torch implementations. It supports vanilla RNN-based and
Transformer models and is easy for users to build new mod-
els. Furthermore, THUMT provides visualization analysis us-
ing layer-wise relevance propagation [137].

NMT-Keras. NMT-KERAS [165] is a flexible toolkit for
neural machine translation developed by the Pattern Recog-
nition and Human Language Technology Research Center at
Polytechnic University of Valencia. The toolkit is based on
Keras which uses Theano or TensorFlow as the backend. NMT-
KERAS emphasizes the development of advanced applications
for NMT systems, such as interactive NMT and online learn-
ing. It also has been extended to other tasks including image
and video captioning, sentence classification, and visual ques-
tion answering.

Neural Monkey NEURAL MONKEY is an open-source
neural machine translation and general sequence-to-sequence
learning system. The toolkit is built on the TensorFlow library
and provides a high-level API tailored for fast prototyping of
complex architectures.

4.2. Tools for Evaluation and Analysis

Manual evaluation of MT outputs is not only expensive but
also impractical to scaling for large language pairs. On the con-
trary, automatic MT evaluation is inexpensive and language-
independent, with BLEU [166] as the representative automatic
evaluation metric. Besides evaluation, there is also a need for
analyzing MT outputs. We recommend the following tools for
evaluating and analyzing MT output.

SACREBLEU. SACREBLEU 9 [167] is a toolkit to com-
pute shareable, comparable, and reproducible BLEU scores.
SACREBLEU computes BLEU scores on detokenized outputs,
using WMT standard tokenization. As a result, the scores are
not affected by different processing tools. Besides, it can pro-
duce a short version string that facilitates cross-paper compar-
isons.

COMPARE-MT. COMPARE-MT10 [168] is a program to
compare the outputs of multiple systems for language gener-
ation. In order to provide high-level analysis of outputs, it en-
ables analysis of accuracy of generation of particular types of
words, bucketed histograms of sentence accuracies or counts
based on salient characteristics, and so on.

MT-COMPAREVAL. MT-COMPAREVAL11 is also a tool for
comparison and evaluation of machine translations. It allows
users to compare translations according to automatic metrics or
quality comparison from the aspects of n-grams.

4.3. Other Tools

Asides from the above mentioned tools, we found the follow-
ing toolkits are very useful for NMT research and deployment.

MOSES. MOSES12[169] is a self-contained statistical ma-
chine translation toolkit. Besides SMT-related components,
MOSES provides a large number of tools to clean and pre-
process texts, which are also useful for training NMT models.
MOSES also contains several easy-to-use scripts to analyze and
evaluate MT outputs.

9https://github.com/mjpost/sacrebleu
10https://github.com/neulab/compare-mt
11https://github.com/ondrejklejch/MT-ComparEval
12https://github.com/moses-smt/mosesdecoder

16

https://github.com/tensorflow/tensor2tensor
https://github.com/pytorch/fairseq
https://github.com/tensorflow/nmt
https://github.com/OpenNMT
https://github.com/awslabs/sockeye
https://github.com/EdinburghNLP/nematus
https://github.com/marian-nmt/marian
https://github.com/THUNLP-MT/THUMT
https://github.com/lvapeab/nmt-keras
https://github.com/ufal/neuralmonkey
https://github.com/mjpost/sacrebleu
https://github.com/neulab/compare-mt
https://github.com/ondrejklejch/MT-ComparEval
https://github.com/moses-smt/mosesdecoder

SUBWORD-NMT. SUBWORD-NMT13 is an open-source
toolkit for unsupervised word segmentation for neural machine
translation and text generation. It adopts the Byte-Pair Encod-
ing (BPE) algorithm proposed by [111] and BPE dropout pro-
posed by [113]. It is the most commonly used toolkit to allevi-
ate the out-of-vocabulary problem in NMT.

SENTENCEPIECE. SENTENCEPIECE14 is a powerful unsu-
pervised text segmentation toolkit. SENTENCEPIECE is written
in C++ and provides APIs for other languages such as Python.
SENTENCEPIECE implements the BPE algorithm [111] and un-
igram language model [112]. Unlike SUBWORD-NMT, SEN-
TENCEPIECE can learn to segment raw texts without additional
pre-processing. As a result, SENTENCEPIECE is a suitable
choice to segment multilingual texts.

5. Conclusion

Neural machine translation has become the dominant ap-
proach to machine translation in both research and practice.
This article reviewed the widely used methods in NMT, includ-
ing modeling, decoding, data augmentation, interpretation, as
well as evaluation. We then summarize the resources and tools
that are useful for NMT research.

Despite the great success achieved by NMT, there are still
many problems to be explored. We list some important and
challenging problems for NMT as follows:

• Understanding NMT. Although there are many attempts
to analyze and interpret NMT, our understandings about
NMT are still limited. Understanding how and why NMT
produces its translation result is important to figure out the
bottleneck and weakness of NMT models.

• Designing better architectures. Designing a new archi-
tecture that better than Transformer is beneficial for both
NMT research and production. Furthermore, designing a
new architecture that balances translation performance and
computational complexity is also important.

• Making full use of monolingual data. Monolingual data
are valuable resources. Despite the remarkable progress,
we believe that there is still much room for NMT to make
use of abundant monolingual data.

• Integrating prior knowledge. Incorporating human
knowledge into NMT is also an important problem. Al-
though there is some progress, the results are far from sat-
isfactory. How to convert discrete and continuous repre-
sentations into each other is a problem of NMT that needs
further exploration.

Acknowledgements

This work was supported by the National Key R&D Program
of China (No. 2017YFB0 202204), National Natural Science

13https://github.com/rsennrich/subword-nmt
14https://github.com/google/sentencepiece

Foundation of China (No. 61925601, No. 61761166 008, No.
61772302), Beijing Academy of Artificial Intelligence, Huawei
Noah’s Ark Lab, and the NExT++ project supported by the Na-
tional Research Foundation, Prime Ministers Office, Singapore
under its IRC@Singapore Funding Initiative. We thank Kehai
Chen and Xiangwen Zhang for their kindly suggestions.

References

[1] P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek,
J. Lafferty, R. L. Mercer, P. S. Roossin, A statistical approach to machine
translation, Computational linguistics 16 (1990) 79–85.

[2] P. Koehn, F. J. Och, D. Marcu, Statistical phrase-based translation,
Technical Report, UNIVERSITY OF SOUTHERN CALIFORNIA MA-
RINA DEL REY INFORMATION SCIENCES INST, 2003.

[3] N. Kalchbrenner, P. Blunsom, Recurrent continuous translation models,
in: Proceedings of EMNLP, 2013, pp. 1700–1709.

[4] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, Y. Bengio, Learning phrase representations using rnn
encoder–decoder for statistical machine translation, in: Proceedings of
EMNLP, 2014, pp. 1724–1734.

[5] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with
neural networks, in: Proceedings of NeurIPS, 2014, pp. 3104–3112.

[6] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly
learning to align and translate, in: Proceedings of ICLR, 2015.

[7] M. Junczys-Dowmunt, T. Dwojak, H. Hoang, Is neural machine trans-
lation ready for deployment? a case study on 30 translation directions,
arXiv preprint arXiv:1610.01108 (2016).

[8] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, et al., Google’s neural ma-
chine translation system: Bridging the gap between human and machine
translation, arXiv preprint arXiv:1609.08144 (2016).

[9] H. Hassan, A. Aue, C. Chen, V. Chowdhary, J. Clark, C. Federmann,
X. Huang, M. Junczys-Dowmunt, W. Lewis, M. Li, et al., Achieving
human parity on automatic chinese to english news translation, arXiv
preprint arXiv:1803.05567 (2018).

[10] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[11] K. Cho, B. Van Merriënboer, D. Bahdanau, Y. Bengio, On the proper-
ties of neural machine translation: Encoder-decoder approaches, arXiv
preprint arXiv:1409.1259 (2014).

[12] Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies
with gradient descent is difficult, IEEE Trans. Neural Netw. (1994).

[13] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. v. d. Oord, A. Graves,
K. Kavukcuoglu, Neural machine translation in linear time, arXiv
preprint arXiv:1610.10099 (2016).

[14] J. Gehring, M. Auli, D. Grangier, D. Yarats, Y. N. Dauphin, Convolu-
tional sequence to sequence learning, arXiv preprint arXiv:1705.03122
(2017).

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of
NeurIPS, 2017, pp. 5998–6008.

[16] A. Graves, G. Wayne, I. Danihelka, Neural turing machines, arXiv
preprint arXiv:1410.5401 (2014).

[17] M.-T. Luong, H. Pham, C. D. Manning, Effective approaches
to attention-based neural machine translation, arXiv preprint
arXiv:1508.04025 (2015).

[18] H. T. Siegelmann, E. D. Sontag, On the computational power of neural
nets, Journal of computer and system sciences (1995).

[19] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural com-
putation (1997).

[20] J. L. Ba, J. R. Kiros, G. E. Hinton, Layer normalization, arXiv preprint
arXiv:1607.06450 (2016).

[21] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: Proceedings of CVPR, 2016, pp. 770–778.

[22] J. Zhou, W. Xu, End-to-end learning of semantic role labeling using
recurrent neural networks, in: Proceedings of ACL, 2015, pp. 1127–
1137.

[23] L. Kaiser, A. N. Gomez, F. Chollet, Depthwise separable convolutions
for neural machine translation, arXiv preprint arXiv:1706.03059 (2017).

17

https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece

[24] F. Wu, A. Fan, A. Baevski, Y. N. Dauphin, M. Auli, Pay less at-
tention with lightweight and dynamic convolutions, arXiv preprint
arXiv:1901.10430 (2019).

[25] L. Liu, M. Utiyama, A. Finch, E. Sumita, Agreement on target-
bidirectional neural machine translation, in: Proceedings of NAACL-
HLT, 2016, pp. 411–416.

[26] C. D. V. Hoang, G. Haffari, T. Cohn, Towards decoding as continuous
optimisation in neural machine translation, in: Proceedings of EMNLP,
2017, pp. 146–156.

[27] X. Zhang, J. Su, Y. Qin, Y. Liu, R. Ji, H. Wang, Asynchronous bidi-
rectional decoding for neural machine translation, in: Proceedings of
AAAI, 2018, pp. 5698–5705.

[28] L. Zhou, J. Zhang, C. Zong, Synchronous bidirectional neural machine
translation, TACL (2019).

[29] J. Gu, J. Bradbury, C. Xiong, V. O. Li, R. Socher, Non-autoregressive
neural machine translation, in: Proceedings of ICLR, 2018.

[30] Z. Zheng, H. Zhou, S. Huang, L. Mou, X. Dai, J. Chen, Z. Tu, Model-
ing past and future for neural machine translation, Transactions of the
Association for Computational Linguistics 6 (2018) 145–157.

[31] Z. Zheng, S. Huang, Z. Tu, X.-Y. Dai, C. Jiajun, Dynamic past and future
for neural machine translation, in: Proceedings of EMNLP-IJCNLP,
2019, pp. 930–940.

[32] B. Zhang, D. Xiong, J. Su, J. Luo, Future-aware knowledge distilla-
tion for neural machine translation, IEEE/ACM Transactions on Audio,
Speech, and Language Processing 27 (2019) 2278–2287.

[33] J. Zhang, C. Zong, Neural machine translation: Challenges, progress
and future, arXiv preprint arXiv:2004.05809 (2020).

[34] Z. Yang, L. Chen, M. Le Nguyen, Regularizing forward and backward
decoding to improve neural machine translation, in: Proceedings of In-
ternational Conference on Knowledge and Systems Engineering (KSE),
2018, pp. 73–78.

[35] Z. Zhang, S. Wu, S. Liu, M. Li, M. Zhou, T. Xu, Regularizing neural
machine translation by target-bidirectional agreement, in: Proceedings
of AAAI, volume 33, 2019, pp. 443–450.

[36] R. Sennrich, B. Haddow, A. Birch, Edinburgh neural machine transla-
tion systems for wmt 16, in: Proceedings of WMT, 2016, pp. 371–376.

[37] J. Su, X. Zhang, Q. Lin, Y. Qin, J. Yao, Y. Liu, Exploiting reverse target-
side contexts for neural machine translation via asynchronous bidirec-
tional decoding, Artificial Intelligence 277 (2019) 103168.

[38] L. Zhou, J. Zhang, C. Zong, H. Yu, Sequence generation: from both
sides to the middle, in: Proceedings of IJCAI, 2019, pp. 5471–5477.

[39] J. Zhang, L. Zhou, Y. Zhao, C. Zong, Synchronous bidirectional infer-
ence for neural sequence generation, Artificial Intelligence 281 (2020)
103234.

[40] R. Sennrich, A. Birch, A. Currey, U. Germann, B. Haddow, K. Heafield,
A. V. M. Barone, P. Williams, The university of edinburgh’s neural mt
systems for wmt17, in: Proceedings of WMT, 2017, pp. 389–399.

[41] S. Mehri, L. Sigal, Middle-out decoding, in: Advances in NeurIPS,
2018, pp. 5518–5529.

[42] Y. Kim, A. M. Rush, Sequence-level knowledge distillation, in: Pro-
ceedings of EMNLP, 2016, pp. 1317–1327.

[43] C. Zhou, J. Gu, G. Neubig, Understanding knowledge distillation in
non-autoregressive machine translation, in: Proceedings of ICLR, 2019.

[44] J. Lee, E. Mansimov, K. Cho, Deterministic non-autoregressive neural
sequence modeling by iterative refinement, in: Proceedings of EMNLP,
2018, pp. 1173–1182.

[45] J. Libovickỳ, J. Helcl, End-to-end non-autoregressive neural machine
translation with connectionist temporal classification, in: Proceedings
of EMNLP, 2018, pp. 3016–3021.

[46] M. Ghazvininejad, O. Levy, Y. Liu, L. Zettlemoyer, Mask-predict: Par-
allel decoding of conditional masked language models, in: Proceedings
of EMNLP-IJCNLP, 2019, pp. 6114–6123.

[47] C. Wang, J. Zhang, H. Chen, Semi-autoregressive neural machine trans-
lation, in: Proceedings of EMNLP, 2018, pp. 479–488.

[48] J. Guo, X. Tan, D. He, T. Qin, L. Xu, T.-Y. Liu, Non-autoregressive neu-
ral machine translation with enhanced decoder input, in: Proceedings of
AAAI, volume 33, 2019, pp. 3723–3730.

[49] C. Shao, Y. Feng, J. Zhang, F. Meng, X. Chen, J. Zhou, Retrieving se-
quential information for non-autoregressive neural machine translation,
in: Proceedings of ACL, 2019, pp. 3013–3024.

[50] Y. Wang, F. Tian, D. He, T. Qin, C. Zhai, T.-Y. Liu, Non-autoregressive

machine translation with auxiliary regularization, in: Proceedings of
AAAI, volume 33, 2019, pp. 5377–5384.

[51] M. Stern, W. Chan, J. Kiros, J. Uszkoreit, Insertion transformer: Flexible
sequence generation via insertion operations, in: Proceedings of ICML,
2019, pp. 5976–5985.

[52] B. Wei, M. Wang, H. Zhou, J. Lin, X. Sun, Imitation learning for non-
autoregressive neural machine translation, in: Proceedings of ACL,
2019, pp. 1304–1312.

[53] N. Akoury, K. Krishna, M. Iyyer, Syntactically supervised transformers
for faster neural machine translation, in: Proceedings of ACL, 2019, pp.
1269–1281.

[54] J. Gu, Q. Liu, K. Cho, Insertion-based decoding with automatically
inferred generation order, TACL 7 (2019) 661–676.

[55] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of
deep bidirectional transformers for language understanding, in: Pro-
ceedings of NAACL-HLT, 2019, pp. 4171–4186.

[56] M. Ranzato, S. Chopra, M. Auli, W. Zaremba, Sequence level train-
ing with recurrent neural networks, arXiv preprint arXiv:1511.06732
(2015).

[57] M. Ranzato, S. Chopra, M. Auli, W. Zaremba, Sequence level training
with recurrent neural networks, in: Proceedings of ICLR, 2016.

[58] L. Wu, F. Tian, T. Qin, J. Lai, T.-Y. Liu, A study of reinforcement
learning for neural machine translation, in: Proceedings of EMNLP,
2018, pp. 3612–3621.

[59] S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, Y. Liu, Minimum risk
training for neural machine translation, in: Proceedings of ACL, 2016,
pp. 1683–1692.

[60] L. Choshen, L. Fox, Z. Aizenbud, O. Abend, On the weaknesses of
reinforcement learning for neural machine translation, in: Proceedings
of ICLR, 2020.

[61] S. Edunov, M. Ott, M. Auli, D. Grangier, M. Ranzato, Classical struc-
tured prediction losses for sequence to sequence learning, in: Proceed-
ings of NAACL-HLT, 2018, pp. 355–364.

[62] Z. Yang, Y. Cheng, Y. Liu, M. Sun, Reducing word omission errors in
neural machine translation: A contrastive learning approach, in: Pro-
ceedings of ACL, 2019, pp. 6191–6196.

[63] J. Wieting, T. Berg-Kirkpatrick, K. Gimpel, G. Neubig, Beyond
BLEU:training neural machine translation with semantic similarity, in:
Proceedings of ACL, 2019, pp. 4344–4355.

[64] L. Chen, Y. Zhang, R. Zhang, C. Tao, Z. Gan, H. Zhang, B. Li, D. Shen,
C. Chen, L. Carin, Improving sequence-to-sequence learning via opti-
mal transport, in: Proceedings of ICLR, 2019.

[65] S. Kumar, Y. Tsvetkov, Von mises-fisher loss for training sequence to
sequence models with continuous outputs, in: Proceedings of ICLR,
2019.

[66] B. Zoph, D. Yuret, J. May, K. Knight, Transfer learning for low-resource
neural machine translation, arXiv preprint arXiv:1604.02201 (2016).

[67] C. Gulcehre, O. Firat, K. Xu, K. Cho, Y. Bengio, On integrating a lan-
guage model into neural machine translation, Computer Speech & Lan-
guage 45 (2017) 137–148.

[68] R. Sennrich, B. Haddow, A. Birch, Improving neural machine transla-
tion models with monolingual data, in: Proceedings of ACL, 2016, pp.
86–96.

[69] A. Poncelas, D. Shterionov, A. Way, G. de Buy Wenniger, P. Passban, In-
vestigating backtranslation in neural machine translation, arXiv preprint
arXiv:1804.06189 (2018).

[70] A. Karakanta, J. Dehdari, J. van Genabith, Neural machine translation
for low-resource languages without parallel corpora, Machine Transla-
tion 32 (2018) 167–189.

[71] K. Imamura, A. Fujita, E. Sumita, Enhancement of encoder and atten-
tion using target monolingual corpora in neural machine translation, in:
Proceedings of the 2nd Workshop on Neural Machine Translation and
Generation, 2018, pp. 55–63.

[72] S. Edunov, M. Ott, M. Auli, D. Grangier, Understanding back-
translation at scale, arXiv preprint arXiv:1808.09381 (2018).

[73] I. Caswell, C. Chelba, D. Grangier, Tagged back-translation, WMT
2019 (2019) 53.

[74] S. Wang, Y. Liu, C. Wang, H. Luan, M. Sun, Improving back-
translation with uncertainty-based confidence estimation, arXiv preprint
arXiv:1909.00157 (2019).

[75] J. Zhang, C. Zong, Exploiting source-side monolingual data in neural

18

machine translation, in: Proceedings of EMNLP, 2016, pp. 1535–1545.
[76] V. C. D. Hoang, P. Koehn, G. Haffari, T. Cohn, Iterative back-translation

for neural machine translation, in: Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, 2018, pp. 18–24.

[77] Y. Cheng, W. Xu, Z. He, W. He, H. Wu, M. Sun, Y. Liu, Semi-supervised
learning for neural machine translation, in: Proceedings of ACL, 2016,
pp. 1965–1974.

[78] D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T.-Y. Liu, W.-Y. Ma, Dual
learning for machine translation, in: Advances in NeurIPS, 2016, pp.
820–828.

[79] Z. Zheng, H. Zhou, S. Huang, L. Li, X.-Y. Dai, J. Chen, Mirror-
generative neural machine translation, in: Proceedings of ICLR, 2020.

[80] K. Song, X. Tan, T. Qin, J. Lu, T.-Y. Liu, Mass: Masked se-
quence to sequence pre-training for language generation, arXiv preprint
arXiv:1905.02450 (2019).

[81] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad, M. Lewis,
L. Zettlemoyer, Multilingual denoising pre-training for neural machine
translation, arXiv preprint arXiv:2001.08210 (2020).

[82] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
L. Zettlemoyer, Deep contextualized word representations, arXiv
preprint arXiv:1802.05365 (2018).

[83] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, Lan-
guage models are unsupervised multitask learners, OpenAI Blog 1
(2019) 9.

[84] K. Clark, U. Khandelwal, O. Levy, C. D. Manning, What does bert look
at? an analysis of bert’s attention, in: Proceedings of the 2019 ACL
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, 2019, pp. 276–286.

[85] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, L. Zettlemoyer, Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and compre-
hension, arXiv preprint arXiv:1910.13461 (2019).

[86] S. Edunov, A. Baevski, M. Auli, Pre-trained language model representa-
tions for language generation, arXiv preprint arXiv:1903.09722 (2019).

[87] J. Zhu, Y. Xia, L. Wu, D. He, T. Qin, W. Zhou, H. Li, T.-Y. Liu,
Incorporating bert into neural machine translation, arXiv preprint
arXiv:2002.06823 (2020).

[88] H. Liu, M. Ma, L. Huang, H. Xiong, Z. He, Robust neural machine
translation with joint textual and phonetic embedding, in: Proceedings
of ACL, 2019, pp. 3044–3049.

[89] M. Zhang, Y. Liu, H. Luan, M. Sun, Adversarial training for unsuper-
vised bilingual lexicon induction, in: Proceedings of ACL, 2017, pp.
1959–1970.

[90] M. Artetxe, G. Labaka, E. Agirre, Learning bilingual word embeddings
with (almost) no bilingual data, in: Proceedings of ACL, 2017, pp. 451–
462.

[91] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, H. Jégou, Word trans-
lation without parallel data, arXiv preprint arXiv:1710.04087 (2017).

[92] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and
composing robust features with denoising autoencoders, in: Proceedings
of ICML, 2008, pp. 1096–1103.

[93] G. Lample, A. Conneau, L. Denoyer, M. Ranzato, Unsupervised
machine translation using monolingual corpora only, arXiv preprint
arXiv:1711.00043 (2017).

[94] M. Artetxe, G. Labaka, E. Agirre, K. Cho, Unsupervised neural machine
translation, arXiv preprint arXiv:1710.11041 (2017).

[95] Z. Yang, W. Chen, F. Wang, B. Xu, Unsupervised neural machine trans-
lation with weight sharing, arXiv preprint arXiv:1804.09057 (2018).

[96] M. Artetxe, G. Labaka, E. Agirre, Unsupervised statistical machine
translation, arXiv preprint arXiv:1809.01272 (2018).

[97] G. Lample, M. Ott, A. Conneau, L. Denoyer, M. Ranzato, Phrase-
based & neural unsupervised machine translation, arXiv preprint
arXiv:1804.07755 (2018).

[98] S. Ren, Z. Zhang, S. Liu, M. Zhou, S. Ma, Unsupervised neural machine
translation with smt as posterior regularization, in: Proceedings of the
AAAI, volume 33, 2019, pp. 241–248.

[99] H. Sun, R. Wang, K. Chen, M. Utiyama, E. Sumita, T. Zhao, Unsu-
pervised bilingual word embedding agreement for unsupervised neural
machine translation, in: Proceedings of ACL, 2019, pp. 1235–1245.

[100] J. Wu, X. Wang, W. Y. Wang, Extract and edit: An alternative to back-
translation for unsupervised neural machine translation, arXiv preprint

arXiv:1904.02331 (2019).
[101] S. Ren, Y. Wu, S. Liu, M. Zhou, S. Ma, A retrieve-and-rewrite initial-

ization method for unsupervised machine translation, in: Proceedings of
ACL, 2020, pp. 3498–3504.

[102] M. Artetxe, G. Labaka, E. Agirre, An effective approach to unsupervised
machine translation, arXiv preprint arXiv:1902.01313 (2019).

[103] G. Lample, A. Conneau, Cross-lingual language model pretraining,
arXiv preprint arXiv:1901.07291 (2019).

[104] J. Chung, K. Cho, Y. Bengio, A character-level decoder without
explicit segmentation for neural machine translation, arXiv preprint
arXiv:1603.06147 (2016).

[105] J. Lee, K. Cho, T. Hofmann, Fully character-level neural machine trans-
lation without explicit segmentation, Transactions of the Association for
Computational Linguistics 5 (2017) 365–378.

[106] M.-T. Luong, C. D. Manning, Achieving open vocabulary neural ma-
chine translation with hybrid word-character models, arXiv preprint
arXiv:1604.00788 (2016).

[107] P. Passban, Q. Liu, A. Way, Improving character-based decoding us-
ing target-side morphological information for neural machine transla-
tion, arXiv preprint arXiv:1804.06506 (2018).

[108] H. Chen, S. Huang, D. Chiang, X. Dai, J. Chen, Combining character
and word information in neural machine translation using a multi-level
attention, in: Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), 2018, pp. 1284–1293.

[109] Y. Gao, N. I. Nikolov, Y. Hu, R. H. Hahnloser, Character-level transla-
tion with self-attention, arXiv preprint arXiv:2004.14788 (2020).

[110] C. Cherry, G. Foster, A. Bapna, O. Firat, W. Macherey, Revisiting
character-based neural machine translation with capacity and compres-
sion, arXiv preprint arXiv:1808.09943 (2018).

[111] R. Sennrich, B. Haddow, A. Birch, Neural machine translation of rare
words with subword units, in: Proceedings of ACL, 2016.

[112] T. Kudo, Subword regularization: Improving neural network trans-
lation models with multiple subword candidates, arXiv preprint
arXiv:1804.10959 (2018).

[113] I. Provilkov, D. Emelianenko, E. Voita, Bpe-dropout: Simple and effec-
tive subword regularization, arXiv preprint arXiv:1910.13267 (2019).

[114] C. Wang, K. Cho, J. Gu, Neural machine translation with byte-level
subwords, in: Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, 2020, pp. 9154–9160.

[115] Z. Tu, Z. Lu, Y. Liu, X. Liu, H. Li, Modeling coverage for neural ma-
chine translation, in: Proceedings of ACL, 2016.

[116] J. Zhang, Y. Liu, H. Luan, J. Xu, M. Sun, Prior knowledge integration
for neural machine translation using posterior regularization, in: Pro-
ceedings of ACL, 2017, pp. 1514–1523.

[117] M. Morishita, J. Suzuki, M. Nagata, Improving neural machine transla-
tion by incorporating hierarchical subword features, in: Proceedings of
COLING, 2018, pp. 618–629.

[118] X. Liu, D. F. Wong, Y. Liu, L. S. Chao, T. Xiao, J. Zhu, Shared-private
bilingual word embeddings for neural machine translation, in: Proceed-
ings of ACL, 2019, pp. 3613–3622.

[119] K. Chen, R. Wang, M. Utiyama, E. Sumita, Content word aware neural
machine translation, in: Proceedings of ACL, 2020, pp. 358–364.

[120] M. Weller-Di Marco, A. Fraser, Modeling word formation in english–
german neural machine translation, in: Proceedings of ACL, 2020, pp.
4227–4232.

[121] A. Eriguchi, K. Hashimoto, Y. Tsuruoka, Tree-to-sequence attentional
neural machine translation, in: Proceedings of ACL, 2016, pp. 823–833.

[122] R. Sennrich, B. Haddow, Linguistic input features improve neural ma-
chine translation, in: Proceedings of WMT, 2016, pp. 83–91.

[123] J. Hao, X. Wang, S. Shi, J. Zhang, Z. Tu, Multi-granularity self-attention
for neural machine translation, in: Proceedings of EMNLP-IJCNLP,
2019, pp. 886–896.

[124] E. Bugliarello, N. Okazaki, Enhancing machine translation with
dependency-aware self-attention, in: Proceedings of ACL, 2020, pp.
1618–1627.

[125] A. Eriguchi, Y. Tsuruoka, K. Cho, Learning to parse and translate im-
proves neural machine translation, in: Proceedings of ACL, 2017, pp.
72–78.

[126] L. H. Baniata, S. Park, S.-B. Park, A multitask-based neural machine
translation model with part-of-speech tags integration for arabic dialects,

19

Applied Sciences 8 (2018) 2502.
[127] J. Gū, H. S. Shavarani, A. Sarkar, Top-down tree structured decoding

with syntactic connections for neural machine translation and parsing,
in: Proceedings of EMNLP, 2018, pp. 401–413.

[128] X. Wang, H. Pham, P. Yin, G. Neubig, A tree-based decoder for neural
machine translation, in: Proceedings of EMNLP, 2018, pp. 4772–4777.

[129] S. Wu, D. Zhang, N. Yang, M. Li, M. Zhou, Sequence-to-dependency
neural machine translation, in: Proceedings of ACL, 2017, pp. 698–707.

[130] R. Aharoni, Y. Goldberg, Towards string-to-tree neural machine trans-
lation, in: Proceedings of ACL, 2017, pp. 132–140.

[131] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, K. Sima’an, Graph
convolutional encoders for syntax-aware neural machine translation, in:
Proceedings of EMNLP, 2017, pp. 1957–1967.

[132] X. Li, L. Liu, Z. Tu, S. Shi, M. Meng, Target foresight based attention
for neural machine translation, in: Proceedings of NAACL-HLT, 2018,
pp. 1380–1390.

[133] X. Yang, Y. Liu, D. Xie, X. Wang, N. Balasubramanian, Latent part-
of-speech sequences for neural machine translation, in: Proceedings of
EMNLP-IJCNLP, 2019, pp. 780–790.

[134] J. Yang, S. Ma, D. Zhang, Z. Li, M. Zhou, Improving neural machine
translation with soft template prediction, in: Proceedings of WMT,
2020, pp. 5979–5989.

[135] Y. Belinkov, Y. Bisk, Synthetic and natural noise both break neural
machine translation, in: Proceedings of ICLR, 2018.

[136] Y. Cheng, L. Jiang, W. Macherey, Robust neural machine translation
with doubly adversarial inputs, in: Proceedings of ACL, 2019, pp. 4324–
4333.

[137] Y. Ding, Y. Liu, H. Luan, M. Sun, Visualizing and understanding neural
machine translation, in: Proceedings of ACL, 2017, pp. 1150–1159.

[138] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
W. Samek, On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation, PloS one 10 (2015) e0130140.

[139] A. Bau, Y. Belinkov, H. Sajjad, N. Durrani, F. Dalvi, J. Glass, Identifying
and controlling important neurons in neural machine translation, in:
Proceedings of ICLR, 2019.

[140] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, A. M. Rush,
Seq2seq-vis: A visual debugging tool for sequence-to-sequence mod-
els, IEEE transactions on visualization and computer graphics 25 (2019)
353–363.

[141] S. He, Z. Tu, X. Wang, L. Wang, M. Lyu, S. Shi, Towards understanding
neural machine translation with word importance, in: Proceedings of
EMNLP-IJCNLP, 2019, pp. 953–962.

[142] A. Raganato, J. Tiedemann, An analysis of encoder representations
in transformer-based machine translation, in: Proceedings of EMNLP
Workshop, 2018, pp. 287–297.

[143] E. Voita, R. Sennrich, I. Titov, The bottom-up evolution of representa-
tions in the transformer: A study with machine translation and language
modeling objectives, in: Proceedings of EMNLP-IJCNLP, 2019, pp.
4396–4406.

[144] F. Stahlberg, D. Saunders, B. Byrne, An operation sequence model
for explainable neural machine translation, in: Proceedings of EMNLP
Workshop, 2018, pp. 175–186.

[145] C. Yun, S. Bhojanapalli, A. S. Rawat, S. Reddi, S. Kumar, Are trans-
formers universal approximators of sequence-to-sequence functions?,
in: Proceedings of ICLR, 2020.

[146] Z. Zhao, D. Dua, S. Singh, Generating natural adversarial examples, in:
Proceedings of ICLR, 2018.

[147] M. T. Ribeiro, S. Singh, C. Guestrin, Semantically equivalent adversarial
rules for debugging nlp models, in: Proceedings of ACL, 2018, pp. 856–
865.

[148] Y. Cheng, Z. Tu, F. Meng, J. Zhai, Y. Liu, Towards robust neural ma-
chine translation, in: Proceedings of ACL, 2018, pp. 1756–1766.

[149] J. Ebrahimi, D. Lowd, D. Dou, On adversarial examples for character-
level neural machine translation, in: Proceedings of COLING, 2018, pp.
653–663.

[150] W. Zou, S. Huang, J. Xie, X. Dai, J. Chen, A reinforced generation of
adversarial examples for neural machine translation, in: Proceedings of
ACL, 2020, pp. 3486–3497.

[151] Y. Cheng, L. Jiang, W. Macherey, J. Eisenstein, AdvAug: Robust adver-
sarial augmentation for neural machine translation, in: Proceedings of
ACL, 2020, pp. 5961–5970.

[152] P. Michel, G. Neubig, Mtnt: A testbed for machine translation of noisy
text, in: Proceedings of EMNLP, 2018, pp. 543–553.

[153] J. Tiedemann, Opus–parallel corpora for everyone, Baltic Journal of
Modern Computing (2016) 384.

[154] B. Zhang, P. Williams, I. Titov, R. Sennrich, Improving massively mul-
tilingual neural machine translation and zero-shot translation, arXiv
preprint arXiv:2004.11867 (2020).

[155] G. Wenzek, M.-A. Lachaux, A. Conneau, V. Chaudhary, F. Guzmán,
A. Joulin, É. Grave, Ccnet: Extracting high quality monolingual datasets
from web crawl data, in: Proceedings of The 12th Language Resources
and Evaluation Conference, 2020, pp. 4003–4012.

[156] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: A system for large-
scale machine learning, in: 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[157] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An im-
perative style, high-performance deep learning library, in: Advances in
NeurIPS, 2019, pp. 8026–8037.

[158] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. Gomez, S. Gouws,
L. Jones, Ł. Kaiser, N. Kalchbrenner, N. Parmar, R. Sepassi, N. Shazeer,
J. Uszkoreit, Tensor2Tensor for neural machine translation, in: Pro-
ceedings of AMTA, 2018, pp. 193–199.

[159] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
M. Auli, fairseq: A fast, extensible toolkit for sequence modeling, in:
Proceedings of NAACL-HLT (Demonstrations), 2019, pp. 48–53.

[160] M. Luong, E. Brevdo, R. Zhao, Neural machine translation (seq2seq)
tutorial, https://github.com/tensorflow/nmt (2017).

[161] F. Hieber, T. Domhan, M. Denkowski, D. Vilar, A. Sokolov, A. Clifton,
M. Post, Sockeye: A toolkit for neural machine translation, arXiv
preprint arXiv:1712.05690 (2017).

[162] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, Z. Zhang, Mxnet: A flexible and efficient machine learn-
ing library for heterogeneous distributed systems, in: Proceedings of
NeurIPS, Workshop, 2016.

[163] M. Junczys-Dowmunt, R. Grundkiewicz, T. Dwojak, H. Hoang,
K. Heafield, T. Neckermann, F. Seide, U. Germann, A. F. Aji, N. Bo-
goychev, A. F. T. Martins, A. Birch, Marian: Fast neural machine trans-
lation in C++, in: Proceedings of ACL, System Demonstrations, 2018,
pp. 116–121.

[164] Z. Tan, J. Zhang, X. Huang, G. Chen, S. Wang, M. Sun, H. Luan, Y. Liu,
THUMT: An open-source toolkit for neural machine translation, in:
Proceedings of AMTA, 2020, pp. 116–122.

[165] A. Peris, F. Casacuberta, Nmt-keras: a very flexible toolkit with a focus
on interactive nmt and online learning, The Prague Bulletin of Mathe-
matical Linguistics 111 (2018) 113–124.

[166] K. Papineni, S. Roukos, T. Ward, W. Zhu, Bleu: A method for automatic
evaluation of machine translation, in: Proceedings of ACL, 2002.

[167] M. Post, A call for clarity in reporting bleu scores, arXiv preprint
arXiv:1804.08771 (2018).

[168] G. Neubig, Z.-Y. Dou, J. Hu, P. Michel, D. Pruthi, X. Wang, compare-
mt: A tool for holistic comparison of language generation systems, in:
Proceedings of NAACL-HLT (Demonstrations), 2019, pp. 35–41.

[169] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, et al., Moses:
Open source toolkit for statistical machine translation, in: Proceedings
of ACL on interactive poster and demonstration sessions, 2007, pp. 177–
180.

20

	1 Introduction
	2 Methods
	2.1 Overview of NMT
	2.1.1 Modeling
	2.1.2 Inference
	2.1.3 Training of NMT Models

	2.2 Architectures
	2.2.1 Evolution of NMT Architectures
	2.2.2 Attention Mechanism
	2.2.3 RNNs, CNNs, and SANs
	2.2.4 Comparison of Fundamental Architectures

	2.3 Bidirectional Inference and Non-autoregressive NMT
	2.3.1 Bidirectional Inference
	2.3.2 Non-autoregressive NMTs

	2.4 Alternative Training Objectives
	2.5 Using Monolingual Data and Unsupervised NMT
	2.5.1 Using Monolingual Data
	2.5.2 Unsupervised NMT

	2.6 Open Vocabulary
	2.7 Prior Knowledge Integration
	2.8 Interpretability and Robustness
	2.8.1 Interpretability
	2.8.2 Robustness

	3 Resources
	3.1 Parallel Data
	3.2 Monolingual Data

	4 Tools
	4.1 Open-source NMT Toolkits
	4.2 Tools for Evaluation and Analysis
	4.3 Other Tools

	5 Conclusion

